Differential Galois theory

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 8월 13일 (금) 11:07 판
둘러보기로 가기 검색하러 가기
  • differential galois theory
  • Liouville 

 

 

historical origin
  • integration in finite terms
  • quadrature of second order differential equation (Fuchsian differential equation)

 

 

differential field
  •  

 

 

solvable by quadratures
  • basic functions : basic elementary functions
  • allowed operatrions : compositions, arithmetic operations, differentiation, integration
  • examples
    • an elliptic integral is representable by quadrature

 

 

elementary extension
  • using exponential and logarithm
  • elementary element

 

 

Liouville extension
  • we can adjoin integrals and exponentials of integrals + algbraic extension
  • an element is said to be representable by a generalized quadrature
  • For\(K_{i}=K_{i-1}(e_i)\) , one of the following condition holds
    • \(e_i'\in K_{i-1}\)
    • \(e_{i}'/e_{i}\in K_{i-1}\) i.e. 
    • \(e_{i}\) is algebraic over \(K_{i-1}\)

 

 

Picard-Vessiot extension
  • framework for linear differential equation
  • made by including solutions of DE to the base field (e.g. rational function field)
  • this corresponds to the concept of the splitting fields(or Galois extensions)
  • we can define a Galois group for a linear differential equation.
  • examples
    • algebraic extension
    • adjoining an integral
    • adjoining the exponential of an integral

 

theorem

If a Picard-Vessiot extension is a Liouville extension, then the Galois group of this extension is solvable.

 

 

Fuchsian differential equation
  • differential equation with regular singularities
  • indicial equation
    \(x(x-1)+px+q=0\)

theorem

A Fuchsian linear differential equation is solvable by quadratures if and only if the monodromy group of this equation is solvable.

 

 

 

solution by quadrature

 

 

related items

 

 

 

encyclopedia

 

 

articles

 

 

books