Harmonic oscillator in quantum mechanics

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 9월 22일 (수) 17:07 판
둘러보기로 가기 검색하러 가기
introduction

 

 

 

harmonic oscillator in classical mechanics
  • 고전역학에서의 조화진동자

 

 

 

creation and annhilation operators

\(a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)\)

\(a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)\)

\(H = \hbar \omega \left(a^{\dagger}a + 1/2\right)\)

\(\left[a , a^{\dagger} \right] = 1\)

 

 

energy

According to quantum mechanics, a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(1/2\omega, (1 +1/2)\omega, (2 +1/2)\omega,(3 +1/2)\omega,\cdots\) in units where Planck’s constant equals 1. 

The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.

 

 

Schrodinger equation
  •  

 

 

path integral formulation

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links