감마함수의 비와 라마누잔의 연분수

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 4월 28일 (토) 15:20 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요
  • 감마함수의 비를 다음과 같이 연분수로 표현가능
    \(\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}\)
  • \(n=0, x=1\) 인 경우, 원주율과 연분수 Brouncker 의 공식 을 얻는다
    \(\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서