Lectures on tensor categories and modular functor

수학노트
imported>Pythagoras0님의 2014년 10월 6일 (월) 19:06 판
둘러보기로 가기 검색하러 가기

introduction

  • Bojko Bakalov and Alexander Kirillov, Jr.


examples of modular tensor category

  • the category \(\mathcal{C}^{\rm int}(\mathfrak{g},\mathfrak{K})\) of representations of a quantum group
  • \(\mathcal{O}_{k}^{\rm int}\) the category of integrable modules of level k over the affine Lie algebra \(\hat{\mathfrak{g}}\)


main results

thm 7.0.1

The category $\mathcal{O}_{k}^{\rm int}$ has a structure of a modular tensor category.


thm 7.0.2

The category $\mathcal{O}_{k}^{\rm int}$ is eqiuvalent to the category $\mathcal{C}^{\rm int}(\mathfrak{g},\mathfrak{K})$ as a modular tensor category for $\mathfrak{K}=k+h^{\vee}$, where $h^{\vee}$ is the dual Coxeter number for $\mathfrak{g}$


memo


articles

  • Finkelberg, M. “An Equivalence of Fusion Categories.” Geometric and Functional Analysis 6, no. 2 (1996): 249–67. doi:10.1007/BF02247887.
  • Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.