Hirota bilinear method
imported>Pythagoras0님의 2012년 10월 28일 (일) 13:05 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
==introduction
==Advantages of the bilinear formalism:
- Multisoliton solutions easy to construct.
- The dependent variables are usually tau-functions, with good properties.
- Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
- Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
example
http://www.thehcmr.org/issue2_1/soliton.pdf
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/HirotaEquation.html
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
- Yoshimasa matsuno Bilinear Transformation Method
- Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
- 2011년 books and articles
- http://library.nu/search?q=
- http://library.nu/search?q=
==expositions
- Bilinear Formalism in Soliton TheoryJ. Satsuma http://www.springerlink.com/content/pv618enuumbm98bx/
- Hirota’s bilinear method and integrability Jarmo Hietarinta, 2008
- Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. Acta Physica Polonica A 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
- Introduction to the Hirota bilinear method J. Hietarinta, 1997
articles
- Integrable deformations of CFTs and the discrete Hirota equations
- Werner Nahm, Sinéad Keegan, 2009
- Werner Nahm, Sinéad Keegan, 2009
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links