Maass forms

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 3월 5일 (금) 19:05 판
둘러보기로 가기 검색하러 가기
introduction
  • Hyperbolic distribution problems and half-integral weight Maass forms

 

 

Eisenstein series
  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum
  • used to estimate the Fourier coefficients of modular forms
  • definition for prime p
    \(S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\)
  • generally defined as
    \(K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}\)

 

 

history

 

 

related items

 

 

books

 

 

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles

 

 

experts on the field

 

 

TeX