Affine sl(2)
introduction
- affine sl(2) \(A^{(1)}_1\)
- 틀:수학노트
construction from semisimple Lie algebra
- this is borrowed from affine Kac-Moody algebra entry
- Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(\langle \cdot,\cdot \rangle\)
- say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha,-\alpha\}\)
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root \(\alpha\)
- Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as an independent one now.
- Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
- construct a Lie algebra from the new Cartan matrix \(A'\)
- Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\[\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\]
basic quantities
- $a_i=1$
- $c_i=a_i^{\vee}=1$
- $a_{ij}$
- coxeter number 2
- dual Coxeter number 2
- Weyl vector
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
- real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
- imaginary roots
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
- \(\delta=\alpha_0+\alpha_1\)
- simple roots
- \(\alpha_0,\alpha_1\)
- \(\alpha_0,\alpha_1\)
- positive roots
\[\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\]
fixing a Cartan subalgebra and its dual
- H is a 3-dimensional space
- basis of the Cartan subalgebra H (this defines C and l_0 also)
\[h_0=C-h_1 \\ h_1\\d=-l_0\]
- basis of the dual of H \[\omega_0,\alpha_0,\alpha_1\]
- pairing
$$ \begin{array}{cccc} {} & \alpha _0 & \alpha _1 & \omega _0 \\ h_0 & 2 & -2 & 1 \\ h_1 & -2 & 2 &0 \\ d & 1 & 0 & 0 \\ \end{array} $$
- dual basis for H \[\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1\]
$$ \begin{array}{cccc} {} & \omega_0 & \omega_1 & \delta \\ h_0 & 1 & 0 & 0 \\ h_1 & 0 & 1 &0 \\ d & 0 & 0 & a_0=1 \\ \end{array} $$
- Weyl vector \[\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1\]
killing form
- invariant symmetric non-deg bilinear forms, $\langle h_i,h_j\rangle =A_{ij}$, $\langle h_0,d\rangle =1$, $\langle h_1,d\rangle =0$, $\langle d,d\rangle =0$,
- with centers (note that $C=h_0+h_1$), $\langle C,h_0\rangle =0$, $\langle C,h_1\rangle =0$, $\langle C,d\rangle =1$,
explicit construction
- start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $,
- make a vector space from it,
- Construct a Loop algbera $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$
- Let $\alpha(m)=\alpha\otimes t^m$,
- Add a central element to get a central extension $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$, and give a bracket $$[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c$$
$$[H(m),E(n)]=2E\otimes t^{m+n}$$ $$[H(m),F(n)]=-2F\otimes t^{m+n}$$ $$[E(m),E(n)]=[F(m),F(n)]=0$$ $$\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0$$
- Add a derivation $d$, $d=t\frac{d}{dt}$ to get $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$
$$d(\alpha(n))=n\alpha(n)$$ $$d(c)=0$$ $$\langle c,d\rangle =0$$
- Define a Lie bracket $[d,x]=d(x)$
denominator formula
- Let $M=M^{*}=\mathbb{Z}\alpha_1$
- the affine Weyl group $W=t(M^{*})W^{0}$ where $t(M^{*})$ is the set $t_{\alpha} : H^{*} \to H^{*}$ given by
$$ t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta $$
- so $w\in W$ can be written as $(n\alpha_1,\pm \alpha_1)$
- if $w=(n\alpha_1,\alpha_1)$, $w(e^{\rho})-e^{\rho}=2n\alpha_1-n(2n+1)\delta$
- if $w=(n\alpha_1,-\alpha_1)$, $w(e^{\rho})-e^{\rho}=-(2n+1)\alpha_1-n(2n+1)\delta$
- let us write down the Weyl-Kac character formula explicitly
$$ {\sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho}) = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\label{WK} $$
- the LHS of \ref{WK} can be written as
$$ \begin{align} \sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho})&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n+1)\alpha_1-n(2n+1)\delta}\\ & =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n+1}q^{n(2n+1)}\\ & =\sum_{m}(-1)^m z^{m}q^{m(m-1)/2} \end{align} $$ where $z=e^{-\alpha_1}$ and $q=e^{-\delta}$
- the RHS of \ref{WK} can be written as
$$ \begin{align} \prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\ & = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right) \end{align} $$ from \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
- we obtain 틀:수학노트
level k highest weight representation
- integrable highest weight
\[\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1,\quad \lambda_{i}\in\mathbb{N}\]
- level
\[k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\]
- therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
central charge
- unitary representations of affine Kac-Moody algebras
- central charge (depends on the level only)
\[c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\]
- conformal weight
\[h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\]
- definition of conformal anomaly
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\]
- strange formula
\[\frac{\langle \rho,\rho \rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
- conformal anomaly
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}\]
vertex operator construction
- Modular invariant partition functions of affine sl(2)
- sl(2) - orthogonal polynomials and Lie theory
- vertex algebras
computational resource
books
- Gannon 190p, 193p, 196p,371p
articles
- Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. Communications in Mathematical Physics 62 (1): 43-53. doi:10.1007/BF01940329.