Vertex operator algebra (VOA)
imported>Pythagoras0님의 2015년 7월 29일 (수) 21:40 판 (→expositions)
definition
- vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
- \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
- \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
- \(\dim V_{(n)}=0\) for \(n<<0\)
- vertex operator
\(V\to (\operatorname{End})[[x,x^{-1}]]\)
\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\) - two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and \(\omega\in V_{(2)}\)
vertex algebra vs VOA
- grading on V
axioms
-
\(u_{n}v=0\) for \(n>>0\) - \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
- (creation property)
\(Y(v,z).\mathbf{1}=v+\cdots\) - conformal vector
\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\) - \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
- translation covariance
\([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\) - Jacobi identity
\[z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)\]
remark on Jacobi identity
- Jacobi identity for Lie algebra says
\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)
history
expositions
articles
- van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142.