Theta functions in affine Kac-Moody algebras
imported>Pythagoras0님의 2014년 12월 6일 (토) 02:11 판 (→introduction)
introduction
notation
- let $k\in \mathbb{Z}_{\geq 1}$ be the level
- Let $M=Q^{\vee}$. This is also the $\mathbb{Z}$-span of $W\theta$ where $\theta$ is the highest root
- for $\gamma\in M$, define $t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}$ by
$$t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma,\lambda)\right)\delta $$
- note $\lambda=\bar{\lambda}+k\Lambda_0$
- note that $|\lambda|^2=|\bar{\lambda}|^2$
- definition
$$ \begin{align} \Theta_{k,\lambda} &=e^{-|\bar{\lambda}|^2\delta/2k}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\ &=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu-\frac{1}{2}k\langle \mu,\mu \rangle \delta)}\\ &=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu}q^{\frac{k}{2}\langle \mu,\mu \rangle} \end{align} $$
$A_1$ example
- level k=1, $\lambda=0$
- let $z=e^{-\alpha_1}$
$$ \Theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots $$