곡선
http://bomber0.myid.net/ (토론)님의 2012년 1월 23일 (월) 05:38 판
이 항목의 스프링노트 원문주소
개요
- 매개화된 곡선 \(\overrightarrow{r}(t)=(\cos t,\sin t, 3t)\).
곡선의 길이
\((1,0,0)\) 에서 \((1,0,6\pi)\)까지의 곡선의 길이
At \((1,0,0)\), \(t=0\) and at \((1,0,6\pi)\), \(t=2\pi\)
\(\overrightarrow{r}'(t)=(-\sin t,\cos t, 3)\)
\(|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}\)
곡선의 길이는 다음과 같이 주어지게 된다
\(L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi\)
곡률
- 곡선의 방향 변화를 재는 양
- 길이 s를 매개변수로 갖는 곡선\(\overrightarrow{X}(s)\)의 경우, 이계도함수의 절대값으로 주어진다
\(\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}\)
\(\overrightarrow{T}'(t)=\frac{(-\cos t,-\sin t, 0)}{\sqrt{10}}\)
\(k=\frac{|\overrightarrow{T}'(t)|}{|\overrightarrow{r}'(t)|}=\frac{\frac{|(-\cos t,\sin t, 0)|}{\sqrt{10}}}{\sqrt{10}}=\frac{1}{10}\)
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- A Visual Dictionary of Special Plane Curves
- National Curve Bank
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)