Vertex operator algebra (VOA)

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 27일 (일) 04:32 판 (→‎메타데이터: 새 문단)
둘러보기로 가기 검색하러 가기

definition

  • vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
  • \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
  • \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
  • \(\dim V_{(n)}=0\) for \(n<<0\)
  • vertex operator\(V\to (\operatorname{End})[[x,x^{-1}]]\)\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
  • two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and  \(\omega\in V_{(2)}\)

 

 

vertex algebra vs VOA

  • grading on V

 

 

axioms

  •  \(u_{n}v=0\) for \(n>>0\)
  • \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
  • (creation property)\(Y(v,z).\mathbf{1}=v+\cdots\)
  • conformal vector\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
  • \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
  • translation covariance  \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
  • Jacobi identity

\[z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)\]  

 

remark on Jacobi identity

  • Jacobi identity for Lie algebra says\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)

 

 

related items

 

expositions

 

articles

  • Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
  • Gilroy, Thomas, and Michael P. Tuite. “Genus Two Zhu Theory for Vertex Operator Algebras.” arXiv:1511.07664 [hep-Th], November 24, 2015. http://arxiv.org/abs/1511.07664.
  • Ai, Chunrui, and Xingjun Lin. “On the Unitary Structures of Vertex Operator Superalgebras.” arXiv:1510.08609 [math], October 29, 2015. http://arxiv.org/abs/1510.08609.
  • Ding, Lu, Wei Jiang, and Wei Zhang. “Zhu’s Algebra of a C1-Cofinite Vertex Algebra.” arXiv:1508.06351 [math], August 25, 2015. http://arxiv.org/abs/1508.06351.
  • van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142.

메타데이터

위키데이터