그리스문자 및 특수문자모음

수학노트
http://bomber0.myid.net/ (토론)님의 2008년 10월 27일 (월) 14:39 판
둘러보기로 가기 검색하러 가기

연습해보는 곳

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?


  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 


\(\alpha\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\alpha

\(\beta\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\beta

\(\gamma\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\gamma

\(\delta\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\delta

\(\epsilon\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\epsilon

\(\varepsilon\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\varepsilon

\(\zeta\)

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?\zeta

\(\eta\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\eta

\(\theta\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\theta

\(\vartheta\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\vartheta
\(\Gamma\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Gamma
\(\Delta\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Delta
\(\Theta\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Theta
\(\Lambda\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Lambda
\(\iota\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\iota
\(\kappa\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\kappa
\(\lambda\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\lambda
\(\mu\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\mu
\(\nu\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\nu
\(\xi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\xi
\(o\)

o
\(\pi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\pi
\(\varpi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\varpi
\(\rho\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\rho
\(\Xi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Xi
\(\Pi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Pi
\(\Sigma\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Sigma
\(\Upsilon\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Upsilon
\(\varrho\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\varrho
\(\sigma\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\sigma
\(\varsigma\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\varsigma
\(\tau\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\tau
\(\upsilon\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\upsilon
\(\phi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\phi
\(\varphi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\varphi
\(\chi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\chi
\(\psi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\psi
\(\omega\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\omega
\(\Phi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Phi
\(\Psi\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Psi
\(\Omega\)

http://bomber0.byus.net/mimetex/mimetex.cgi?\Omega


 


\alpha \iota \varrho
\beta \kappa \sigma
\gamma \lambda \varsigma
\delta \mu \tau
\epsilon \nu \upsilon
\varepsilon \xi \phi
\zeta o o \varphi
\eta \pi \chi
\theta \varpi \psi
\vartheta \rho \omega
 
\Gamma \Xi \Phi
\Delta \Pi \Psi
\Theta \Sigma \Omega
\Lambda \Upsilon

 

\aleph \prime \forall
h \hbar \emptyset \exists
\imath \nabla \neg
\jmath \surd \flat
\ell \top \natural
\wp \bot \sharp
\Re \clubsuit
\Im \angle \diamondsuit
\partial \triangle \heartsuit
\infty \backslash \spadesuit
\ldots \cdots \vdots \ddots

 

arcsin \arcsin dim \dim log \log
arccos \arccos exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc liminf \liminf tan \tan
deg \deg limsup \limsup tanh \tanh
det \det ln \ln

 

\sum \bigcap \bigodot
\prod \bigcup \bigotimes
\coprod \bigsqcup \bigoplus
\int \bigvee \biguplus
\oint \bigwedge
\pm \cap \vee
\mp \cup \wedge
\setminus \uplus \oplus
\cdot \sqcap \ominus
\times \sqcup \otimes
\ast \triangleleft \oslash
\star \triangleright \odot
\diamond \wr \dagger
\circ \bigcirc \ddagger
\bullet \bigtriangleup \amalg
\div \bigtriangledown
\leftarrow \longleftarrow \uparrow
\Leftarrow = \Longleftarrow \Uparrow
\rightarriw \longrightarrow \downarrow
\Rightarrow = \Longrightarrow \Downarrow
\leftrightarrow \longleftrightarrow \updownarrow
\Leftrightarrow \Longleftrightarrow \Updownarrow
\mapsto \longmapsto \nearrow
\hookleftarrow \hookrightarrow \searrow
\leftharpoonup \rightharpoonup \swarrow
\leftharpoondown \rightharpoondown \nwarrow
\rightleftharpoons

Delimiters


  normal:()[]()  

  \big:  

  \Big:  

  \bigg:  

  \Bigg:  


Marks above and below:

 

 

   
x+y+z \overline{x+y+z}
  \underline{x+y+z} x+y+z
x++xktimes \overbrace{x+\cdots+x}^{k\;\rm times}
  \underbrace{x+\cdots+x}_{k\;\rm times} x++xktimes
−−−−−−−−−−x1++xk \overleftarrow{x_1+\cdots+x_k}
  \overrightarrow{x_1+\cdots+x_k} −−−−−−−−−−x1++xk
{n \choose 2}   2n  
{n \brack 2}   2n  
{n \brace 2}   2n  
f(x)=\cases {
      x^2+1&\text{if $x<0$}\cr
      1-x&\text{otherwise}
}
  f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}}  
\pmatrix{1& 0\\ 0& 1}   1001  
\left[\matrix{a^2-b^2& -1\\ 1& 2ab}\right]   a2−b21−12ab
= \ne or \neq (same as \not=) \dagger
\le (same as \leq) \ddagger
\ge (same as \geq)
\{ (same as \lbrace)
\} (same as \rbrace)
\to (same as \rightarrow)
\gets (same as \leftarrow)
\owns (same as \ni)
\land (same as \wedge)
\lor (same as \vee)
\lnot (same as \neg)
(same as \vert)
(same as \Vert)

http://www.math.union.edu/~dpvc/jsmath/symbols/welcome.html 에서 가져옴.