그리스문자 및 특수문자모음
연습해보는 곳
http://bomber0.byus.net/mimetex/mimetex.cgi?\frac{az+b}{cz+d}
http://bomber0.byus.net/mimetex/mimetex.cgi?\arcsin x+arcsin y=arcsin (x \sqrt{1-y^2}+y \sqrt{1-x^2})
\(\arcsin x+ \arcsin y=\arcsin (x \sqrt{1-y^2}+y \sqrt{1-x^2})\)
\(\ln x + \ln y= \ln xy\)
\(\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\)
[1]http://bomber0.byus.net/mimetex/mimetex.cgi?\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx
http://bomber0.byus.net/mimetex/mimetex.cgi?\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}
\(aaa\ldots bbb\cdots ccc\vdots ddd\ddots\)
|
\alpha | \iota | \varrho | ||
\beta | \kappa | \sigma | |||
\gamma | \lambda | \varsigma | |||
\delta | \mu | \tau | |||
\epsilon | \nu | \upsilon | |||
\varepsilon | \xi | \phi | |||
\zeta | o | o | \varphi | ||
\eta | \pi | \chi | |||
\theta | \varpi | \psi | |||
\vartheta | \rho | \omega | |||
\Gamma | \Xi | \Phi | |||
\Delta | \Pi | \Psi | |||
\Theta | \Sigma | \Omega | |||
\Lambda | \Upsilon |
\aleph | \prime | \forall | |||
h | \hbar | \emptyset | \exists | ||
\imath | \nabla | \neg | |||
\jmath | \surd | \flat | |||
\ell | \top | \natural | |||
\wp | \bot | \sharp | |||
\Re | \clubsuit | ||||
\Im | ∠ | \angle | \diamondsuit | ||
\partial | \triangle | \heartsuit | |||
\infty | \backslash | \spadesuit |
\ldots | \cdots | \vdots | \ddots |
arcsin | \arcsin | dim | \dim | log | \log |
arccos | \arccos | exp | \exp | max | \max |
arctan | \arctan | gcd | \gcd | min | \min |
arg | \arg | hom | \hom | Pr | \Pr |
cos | \cos | inf | \inf | sec | \sec |
cosh | \cosh | ker | \ker | sin | \sin |
cot | \cot | lg | \lg | sinh | \sinh |
coth | \coth | lim | \lim | sup | \sup |
csc | \csc | liminf | \liminf | tan | \tan |
deg | \deg | limsup | \limsup | tanh | \tanh |
det | \det | ln | \ln |
\sum | \bigcap | \bigodot | ||||||
\prod | \bigcup | \bigotimes | ||||||
\coprod | \bigsqcup | \bigoplus | ||||||
\int | \bigvee | \biguplus | ||||||
\oint | \bigwedge |
\pm | \cap | \vee | |||
\mp | \cup | \wedge | |||
\setminus | \uplus | \oplus | |||
\cdot | \sqcap | \ominus | |||
\times | \sqcup | \otimes | |||
\ast | \triangleleft | \oslash | |||
\star | \triangleright | \odot | |||
\diamond | \wr | \dagger | |||
\circ | \bigcirc | \ddagger | |||
\bullet | \bigtriangleup | \amalg | |||
\div | \bigtriangledown |
Delimiters
normal:()[]()
\big:
\Big:
\bigg:
\Bigg:
Marks above and below:
x+y+z | \overline{x+y+z} | ||
\underline{x+y+z} | x+y+z | ||
x++xktimes | \overbrace{x+\cdots+x}^{k\;\rm times} | ||
\underbrace{x+\cdots+x}_{k\;\rm times} | x++xktimes | ||
−−−−−−−−−−x1++xk | \overleftarrow{x_1+\cdots+x_k} | ||
\overrightarrow{x_1+\cdots+x_k} | −−−−−−−−−−x1++xk |
{n \choose 2} | 2n | ||
{n \brack 2} | 2n | ||
{n \brace 2} | 2n | ||
f(x)=\cases { x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise} } |
f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}} | ||
\pmatrix{1& 0\\ 0& 1} | 1001 |
| |
h] |
a2−b21−12ab
|
= | \ne or \neq | (same as \not=) | \dagger | |
\le | (same as \leq) | \ddagger | ||
\ge | (same as \geq) | |||
\{ | (same as \lbrace) | |||
\} | (same as \rbrace) | |||
\to | (same as \rightarrow) | |||
\gets | (same as \leftarrow) | |||
\owns | (same as \ni) | |||
\land | (same as \wedge) | |||
\lor | (same as \vee) | |||
\lnot | (same as \neg) | |||
(same as \vert) | ||||
(same as \Vert) |
http://www.math.union.edu/~dpvc/jsmath/symbols/welcome.html 에서 가져옴.