다이로그 함수의 special value 계산
이 항목의 스프링노트 원문주소==
개요==
special value의 계산==
\(\mbox{Li}_{2}(-1)\) 의 계산
반전공식에 \(x=-1\) 을 대입하여 얻을 수 있다.
\(\mbox{Li}_{2}(\frac{1}{2})\) 의 계산
오일러의 반사공식에서 \(x=\frac{1}{2}\) 를 대입하여 얻을 수 있다.
또는
\(\zeta(2)=\sum_{1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\) 와
\(\frac{\pi^2}{12}=\sum_{1}^{\infty}\frac{2}{(2n)^2}=\sum_{1}^{\infty}\frac{1+(-1)^n}{n^2}=\sum_{1}^{\infty}\frac{1}{n^2}+\sum_{1}^{\infty}\frac{(-1)^n}{n^2}=\frac{\pi^2}{6}+\sum_{1}^{\infty}\frac{(-1)^n}{n^2}\)
를 이용하여 보일 수 있다.
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 의 계산
오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.
\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)
여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)
이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다.
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})\) 의 계산
제곱공식\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\) 에 \(x=\frac{1-\sqrt{5}}{2}\) 를 대입하면,
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))\) 를 얻는다.
\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})\) 의 계산
반전공식에 \(x=\frac{-1-\sqrt{5}}{2}\)를 대입하면, \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\) 를 얻는다.