두자연수가 서로소일 확률과 리만제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:26 판 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 수학노트 원문주소

 

 

 

개요

 

  • 두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률
  • 답은 리만제타함수의 값 \(\zeta(2)\) 와 관련있음.

 

 

두 자연수가 소수 p를 공약수로 가질 확률은 \(\frac{1}{p^2}\)가 된다.

따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\prod_{p\text{:prime}}1-p^{-2}\)

그런데 이 녀석, 지난 글에 등장한 공식과 좀 닮아있지 않은가?

\(\zeta(s)=\prod_{p\text{:prime}}\frac{1}{1-p^{-s}}\)

이를 활용하면,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\frac{1}{\zeta(2)}\)

그래서 답이 나왔다.

두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은

\(\frac{6}{\pi^2}\approx0.6079271\cdots\)
이 문제 어디에 도대체 원이 숨어있단 말인가?

 

 

관련된 항목들

 

 

 

블로그