라그랑지의 네 제곱수 정리

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 11월 5일 (목) 06:15 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

간단한 소개

 

  • 모든 자연수는 네 개의 제곱수의 합으로 표현가능

 

 

자코비 세타함수를 이용한 증명
  • 자코비 세타함수
    [[자코비 세타함수|]]\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\)
  • \(x=e^{\pi i \tau}\) 로 두면,
    \(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)

\(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그