란덴변환(Landen's transformation)

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 3월 28일 (토) 09:58 판
둘러보기로 가기 검색하러 가기
간단한 소개
  •  타원적분
    \(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)
  • 만족시키는 다음 변환 공식을 란덴 변환이라 함.

\(K(\frac{2\sqrt{x}}{1+x})=(1+x)K(x)\)

  • hypergeometric 급수와 타원 적분
    \(F(a,b,c;x)=\sum_{k=0}^\infty\frac{(a)_k (b)_k}{(c)_k k!}x^k\) 로 정의하면, \(K(\sqrt{x})=\frac{\pi}{2}F(\frac{1}{2},\frac{1}{2},1;x)\)
  •  

 

  • [/pages/2998854/attachments/1341664 Landen.jpg]
     

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

위키링크

 

 

참고할만한 자료