로그 탄젠트 적분(log tangent integral)
간단한 소개
\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)
\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{d}{ds}\Gamma(s)L(s)|_{s=1}\)
\(F(s)=\sum_{n=1}^{\infty}\frac{f(n)}{n^s}\)
\(\Gamma(s)F(s)=\int_0^{\infty}(\sum_{n=1}^{\infty}f(n)e^{-nt})t^{s-1}\,dt\)\(z=e^{-t}\) 로 치환하면,
\(\Gamma(s)F(s)=\int_0^{1}(\sum_{n=1}^{\infty}f(n)z^n)(\log\frac{1}{z})^{s-1}\,\frac{dz}{z}\)
\(f(n+q)=f(n)\) 을 만족하면 (가령 디리클레 캐릭터의 경우)
\(\sum_{n=1}^{\infty}f(n)z^n=\frac{p(z)}{1-z^q}\)
여기서 \(p(z)=\sum_{n=1}^{q-1}f(n)z^n\)
이를 이용하면,
\(\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\,\frac{dz}{z}\) 를 얻는다.
\(\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)
Gradshteyn and Ryzhik
http://www.math.tulane.edu/~vhm/Table.html
The integrals in Gradshteyn and Ryzhik. Part 1: A family of logarithmic integrals.
[1]Victor H. Moll
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Integrals, an Introduction to Analytic Number Theory
-
- Ilan Vardi, The American Mathematical Monthly, Vol. 95, No. 4 (Apr., 1988), pp. 308-315
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그