다이감마 함수(digamma function)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 감마함수의 로그미분으로 정의



정의와 급수표현

  • 정의\[\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\]
  • 급수표현\[\psi(z)=-\frac{1}{z} -\gamma +\sum_{n=1}^\infty \frac{z}{n(n+z)} , z \neq 0, -1, -2, -3, \cdots\]

(증명)

감마함수의 무한곱표현

\(\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\)

위의 식에 로그미분을 취하여 얻는다. ■


  • \(z = 0, -1, -2, -3, \cdots\) 에서 pole을 가진다



함수의 그래프

  • \(-3<x<3\)일 때, \(\psi(x)\)의 그래프

다이감마 함수(digamma function)1.gif


도함수와 polygamma 함수



차분방정식과의 관계

\(\psi(x + 1) - \psi(x) = \frac{1}{x}\)

  • 차분방정식의 기본정리를 적용하면\[\sum_{n=a}^{b-1}\frac{1}{n}=\psi(b)-\psi(a)\]
  • 조화급수와의 관계\[\sum_{n=1}^{N}\frac{1}{n}=\psi(N+1)-\psi(1)=\psi(N+1)-\gamma\]
  • 일반화\[\psi^{(n)}(x+1)-\psi^{(n)}(x)=\frac{(-1)^n n!}{x^{n+1}}\]



점근 급수

\[ \begin{align} \psi(x) - \log(x) &= - \frac{1}{2x} - \sum_{n=1}^\infty \frac{B_{2n}}{2n(x^{2n})}\\ &=-\frac{1}{12 x^2}+\frac{1}{120 x^4}-\frac{1}{252 x^6}+\frac{1}{240 x^8}-\frac{1}{132 x^{10}}+\cdots \end{align} \] 또는 \[ \psi(x) = \log(x) - \frac{1}{2x} + \sum_{n=1}^\infty \frac{\zeta(1-2n)}{x^{2n}} \] 여기서 \(B_{n}\)은 베르누이 수



반사공식

  • 감마함수의 반사공식\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]
  • 위의 식을 로그미분하여 다음을 얻는다

\(\psi(1 - x) - \psi(x) = \pi\,\!\cot{ \left ( \pi x \right ) }\)

여기서 \(x\)를 \(-x\)로 두면 다음을 얻는다

\(\psi(1 + x) = \psi(-x) -\pi\,\!\cot{ \left ( \pi x \right ) }\)



덧셈공식

  • 감마함수의 곱셈공식에 따른 성질\[m\ln m+\psi(z)+ \psi\left(z + \frac{1}{m}\right) + \cdots+ \psi\left(z + \frac{m-1}{m}\right) = m\psi(mz)\]

(증명)

감마함수의 곱셈공식은 적당한 상수 c에 대하여 다음과 같이 쓸 수 있다.

\(m^{mz}\Gamma(z)\cdots \Gamma\left(z + \frac{m-1}{m}\right) = c\Gamma(mz)\)

변수를 x로 바꾸고, 로그를 취하면,

\((m\ln m)x+\ln \Gamma(x) +\ln \Gamma\left(x + \frac{m-1}{m}\right) =\ln c+\ln \Gamma(mx)\)

미분하면,

\(m\ln m+\psi(x)+\cdots+\psi(x+\frac{m-1}{m})=m\psi(mx)\) ■

  • 이항 덧셈공식\[2\psi(2x)=\psi(x)+\psi(x+{1\over2})+2\ln 2\]



가우스의 Digamma 정리

\(\psi\left(\frac{m}{k}\right) = -\gamma -\ln(2k) -\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lfloor (k-1)/2\rfloor} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right) \)

\(\psi\left(1-\frac{m}{k}\right) = -\gamma -\ln(2k) +\frac{\pi}{2}\cot\left(\frac{m\pi}{k}\right) +2\sum_{n=1}^{\lfloor (k-1)/2\rfloor} \cos\left(\frac{2\pi nm}{k} \right) \ln\left(\sin\left(\frac{n\pi}{k}\right)\right) \)


special values

\(\psi(1) = -\gamma\,\!\)

\(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)

\(\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{2}{3}\right) = \frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)

\(\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{3}{4}\right) = \frac{\pi}{2} - 3\ln{2} - \gamma\)

\(\psi\left(\frac{1}{5}\right) =-\gamma -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \pi -\log (10)+2 \left(\frac{1}{8} \left(\sqrt{5}-1\right) \log \left(\frac{5}{8}-\frac{\sqrt{5}}{8}\right)+\frac{1}{8} \left(-1-\sqrt{5}\right) \log \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)\right)\)

\(\psi\left(\frac{2}{5}\right) =-\gamma -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \pi -\log (10)+2 \left(\frac{1}{8} \left(-1-\sqrt{5}\right) \log \left(\frac{5}{8}-\frac{\sqrt{5}}{8}\right)+\frac{1}{8} \left(\sqrt{5}-1\right) \log \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)\right) \)

\(\psi\left(\frac{3}{5}\right) =-\gamma +\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \pi -\log (10)+2 \left(\frac{1}{8} \left(-1-\sqrt{5}\right) \log \left(\frac{5}{8}-\frac{\sqrt{5}}{8}\right)+\frac{1}{8} \left(\sqrt{5}-1\right) \log \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)\right) \)

\(\psi\left(\frac{4}{5}\right) =-\gamma +\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \pi -\log (10)+2 \left(\frac{1}{8} \left(\sqrt{5}-1\right) \log \left(\frac{5}{8}-\frac{\sqrt{5}}{8}\right)+\frac{1}{8} \left(-1-\sqrt{5}\right) \log \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)\right)\)

\(\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)

\(\psi\left(\frac{5}{6}\right) = \frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)


역사



메모

관련된 항목들


매스매티카 파일 및 계산 리소스



수학용어번역


사전 형태의 자료


관련논문


관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'digamma'}, {'LEMMA': 'function'}]