"란덴변환(Landen's transformation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “표준적인 도서 및 추천도서” 문자열을 “관련도서” 문자열로)
91번째 줄: 91번째 줄:
 
** 287-319p from <em style="">Probability, Geometry and Integrable Systems</em> For Henry McKean's Seventy-Fifth Birthday Edited by Mark Pinsky and Björn Birnir
 
** 287-319p from <em style="">Probability, Geometry and Integrable Systems</em> For Henry McKean's Seventy-Fifth Birthday Edited by Mark Pinsky and Björn Birnir
 
* http://www.msri.org/communications/books/Book55/files/13landen.pdf
 
* http://www.msri.org/communications/books/Book55/files/13landen.pdf
 +
[[분류:타원적분]]

2013년 4월 25일 (목) 09:56 판

버전1

  • 다음 변환 공식을 타원적분에 대한 란덴 변환이라 함.

\(K(\frac{2\sqrt{x}}{1+x})=(1+x)K(x)\)

 

 

버전2

  • 타원적분

\(I(a,b) = \int _0^{\frac{\pi}{2}}\frac{1}{\sqrt{a^2 \cos^2(\theta) + b^2 \sin^2(\theta)}} \, d \theta\)

  • 다음 변환에 의하여, 그 값이 변하지 않는다.

\((a,b) \mapsto (\frac{a+b}{2}, \sqrt {ab})\)

 

버전3

  • hypergeometric 급수와 타원 적분\[F(a,b,c;x)=\sum_{k=0}^\infty\frac{(a)_k (b)_k}{(c)_k k!}x^k\] 로 정의하면, \(K(\sqrt{x})=\frac{\pi}{2}F(\frac{1}{2},\frac{1}{2},1;x)\)
  • 이 경우, 란덴변환은 다음과 같이 표현됨.\[F(\frac{1}{2},\frac{1}{2};1;\frac{4x}{(1+x)^2})=(1+x)F(\frac{1}{2},\frac{1}{2};1;x^2)\]
  • 초기하급수(Hypergeometric series) 항목 참조

 

 

란덴변환과 AGM

란덴변환을 통해, 타원적분과 AGM의 다음과 같은 관계가 유도 가능

\(K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\)

(증명)

란덴변환을 무한히 반복하면,

\(I(a,b)=\int _0^{\frac{\pi}{2}} \frac{1}{\sqrt{a^2 \cos^2(\theta) + b^2 \sin^2(\theta)}} \, d\theta = \int _0^{\frac{\pi}{2}}\frac{1}{\operatorname{AGM}(a,b)} \, d\theta = \frac{\pi}{2 \,\operatorname{AGM}(a,b)}\)
\[b^2 = a^2 (1 - k^2)\] 로 두면,

\(I(a,b)=\frac{1}{a} \int _0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k^2 \sin^2(\theta)}} \, d\theta = \frac{1}{a} F\left( \frac{\pi}{2},k\right) = \frac{1}{a} K(k)\)

\(a=1, b=\sqrt{1-k^2}\) 이면\[K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\]

 

 

관련된 다른 주제들

 

 

관련도서

 

사전 참고자료

 

 

참고할만한 자료