"역삼각함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
9번째 줄: 9번째 줄:
 
==개요==
 
==개요==
  
*  사인/아크사인함수 덧셈정리의 적분표현<br><math>\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2</math><br><math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math><br><math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
+
*  사인/아크사인함수 덧셈정리의 적분표현:<math>\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2</math>:<math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math>:<math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
*  탄젠트/아크탄젠트 함수 덧셈정리의 적분표현<br><math>\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}</math><br><math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math><br><math>\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math><br>  <br>
+
*  탄젠트/아크탄젠트 함수 덧셈정리의 적분표현:<math>\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}</math>:<math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math>:<math>\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math><br>  <br>
  
 
<math>x>0</math> 일 때,
 
<math>x>0</math> 일 때,

2013년 1월 12일 (토) 10:58 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 사인/아크사인함수 덧셈정리의 적분표현\[\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2\]\[\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})\]\[\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx \]
  • 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현\[\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\]\[\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\]\[\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}\]
     

\(x>0\) 일 때,

\(\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}\)

 

\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)

\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\)

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 


 

 


 

 


 

 

블로그