지겔-아이젠슈타인 급수

수학노트
Pythagoras0 (토론 | 기여)님의 2018년 5월 15일 (화) 23:32 판
둘러보기로 가기 검색하러 가기

개요


$g=2$인 경우

  • 지겔-아이젠슈타인 시리즈의 푸리에 전개

$$E_w=\sum_{T}a(T)\exp\left(2\pi i \operatorname{Tr}(T\tau)\right)$$

  • $T = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in

M_2({1 \over 2}\Z)$ 대각성분이 정수인 양의 준정부호행렬

  • $\tau=\left(

\begin{array}{cc} \tau _1 & z \\ z & \tau _2 \end{array} \right)$로 두면, $$ \operatorname{Tr}(T\tau)=a \tau _1+b z+c \tau _2 $$

  • $q_i=e^{2\pi i \tau_i}$, $\zeta=e^{2\pi i z}$로 두자
  • 판별식 $D = b^2-4ac\leq 0$
  • 기본판별식 $D_0$, 체 $\Q(\sqrt{D})$의 판별식
정리 ([BL2014] Thm 3.4)

아이젠슈타인 급수 $E_w$의 푸리에계수 $a(T)$는 다음과 같이 주어진다 $$ a(T)= \begin{cases} 1, & \text{if $a=b=c=0$}\\ {-2w \over B_{w}} \sum_{d | \gcd(a,b,c)} d^{w-1} \alpha(D/d^2), & \text{otherwise} \end{cases} $$ 여기서 $B_{k}$는 베르누이 수이고 $\alpha$는 $$ \alpha(D) = \begin{cases} 1, & \text{if $D=0$}\\ 0, & \text{if $D$ is not a discriminant} \\ {1 \over \zeta(3-2w)} C(w-1,D), & \text{otherwise} \end{cases} $$ 여기서 $C$는 코헨 함수로 다음과 같이 주어진다 $$ C(s-1,D) = L_{D_0}(2-s) \sum_{d \mid f} \mu(d) \left(\frac{D_0}{d}\right) d^{s-2} \sigma_{2s-3}(f/d), \qquad\qquad D = D_0 f^2. $$ 이 때, $\zeta$는 리만제타함수, $L_{D_0}$는 이차수체에 대한 디리클레 L-함수, $\mu$는 뫼비우스 함수, $\left(\frac{\cdot}{\cdot}\right)$는 자코비 부호, $\sigma_n(x)$는 $x$의 약수의 n차 거듭제곱의 합.


$E_4$의 푸리에 계수

$$ \begin{array}{c|c|c|c|c|c|c|c|c|c|c} T & \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right) & \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \\ \hline a(T) & 1 & 240 & 240 & 2160 & 2160 & 240 & 13440 & 30240 & 13440 & 240 \\ \hline q & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 \end{array} $$


$E_6$의 푸리에 계수

$$ \begin{array}{c|c|c|c|c|c|c|c|c|c|c} T & \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right) & \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \\ \hline a(T) & 1 & -504 & -504 & -16632 & -16632 & -504 & 44352 & 166320 & 44352 & -504 \\ \hline q & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 \end{array} $$


$E_8$의 푸리에 계수

$$ \begin{array}{c|c|c|c|c|c|c|c|c|c|c} T & \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right) & \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \\ \hline a(T) & 1 & 480 & 480 & 61920 & 61920 & 480 & 26880 & 175680 & 26880 & 480 \\ \hline q & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta ^2} & \frac{q_1 q_2}{\zeta } & q_1 q_2 & \zeta q_1 q_2 & \zeta ^2 q_1 q_2 \end{array} $$

테이블

메모


관련된 항목들


매스매티카 파일 및 계산 리소스

관련논문

  • Ikeda, Tamotsu, and Hidenori Katsurada. “Explicit Formula for the Siegel Series of a Half-Integral Matrix over the Ring of Integers in a Non-Archimedian Local Field.” arXiv:1602.06617 [Math], February 21, 2016. http://arxiv.org/abs/1602.06617.
  • Walling, Lynne H. ‘Hecke Eigenvalues and Relations for Siegel Eisenstein Series of Arbitrary Degree, Level, and Character’. arXiv:1412.4588 [math], 15 December 2014. http://arxiv.org/abs/1412.4588.
  • [BL2014] Bröker, Reinier, and Kristin Lauter. 2014. “Evaluating Igusa Functions.” Mathematics of Computation. doi:10.1090/S0025-5718-2014-02816-0.
  • Pantchichkine, Alexei. 2012. “Analytic Constructions of P-Adic L-Functions and Eisenstein Series.” arXiv:1204.3878 [math], April. http://arxiv.org/abs/1204.3878.
  • Kudla, Stephen S. "Some extensions of the Siegel-Weil formula." Eisenstein series and applications. Birkhäuser Boston, 2008. 205-237.
  • King, Oliver. 2003. “A Mass Formula for Unimodular Lattices with No Roots.” Mathematics of Computation 72 (242): 839–63. doi:10.1090/S0025-5718-02-01455-2.
  • Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
  • Shimura, Goro. “The Number of Representations of an Integer by a Quadratic Form.” Duke Mathematical Journal 100, no. 1 (1999): 59–92. doi:10.1215/S0012-7094-99-10002-0.
  • Yang, Tonghai. “An Explicit Formula for Local Densities of Quadratic Forms.” Journal of Number Theory 72, no. 2 (1998): 309–56. doi:10.1006/jnth.1998.2258.
  • Walling, Lynne H. “Explicit Siegel Theory: An Algebraic Approach.” Duke Mathematical Journal 89, no. 1 (1997): 37–74. doi:10.1215/S0012-7094-97-08903-1.
  • Katsurada, Hidenori. "An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$." Nagoya Mathematical Journal 146 (1997): 199-223.
  • Kitaoka, Yoshiyuki. 1986. “Local Densities of Quadratic Forms and Fourier Coefficients of Eisenstein Series.” Nagoya Mathematical Journal 103: 149–60.
  • Ozeki, Michio, and Tadashi Washio. “Table of the Fourier Coefficients of Eisenstein Series of Degree $3$.” Proceedings of the Japan Academy, Series A, Mathematical Sciences 59, no. 6 (1983): 252–55. doi:10.3792/pjaa.59.252.
  • Kudla, Stephen S. "Seesaw dual reductive pairs." Automorphic forms of several variables (Katata, 1983) 46 (1983): 244-268.