컴팩트 리만곡면의 자기동형군

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 컴팩트 리만곡면의 자기동형군의 크기에 대한 정리
  • Hurwitz의 정리

The order of the automorphism group of a compact Riemann surface M of genus g > 1 is bounded by 84(g-1).


증명의 아웃라인은 다음과 같다. (Riemann Surfaces, By Hershel M. Farkas, Irwin Kra Chapter V) 이 아웃라인에 대한 증명은 Complex Functions: An Algebraic and Geometric Viewpoint By Gareth A. Jones, David Singerman 에 잘 나와있다.


간략하게 답을 적자면,

(1) by the Uniformization theorem (2) essentially by the monodromy theorem (3) the image of a compact set under a continuous map is compact. (4),(5) (fundamental domain for a subgroup) = union of several copies (same as index) of (fundamental domain for the original group)

이렇게 하고 보니, 학부생들에게 가르치기는 다소 무리가 있어 보이기도 한다. 우리가 공산당도 아니고… -_-

(2)와 (5)를 보면, 문제는

\(Area(U/\Gamma)\), \(Area(U/N(\Gamma))\)

을 구하는 것으로 귀결된다.

\(Area(U/\Gamma)=2\pi (2g-2)\)

이것은 Gauss-Bonnet theorem

때문에 그러하다.

이제

\(Area(U/N(\Gamma)) \ge \frac{\pi}{21}\)

을 보이는 일이 남았다.

이 부등식의 증명은 fundamental domain의 면적에 대한 지겔의 정리를 참조


이렇게 해서 Hurwitz’s theorem 대략 증명끝.



후르비츠 군

모든 후르비츠 군은 리만 곡면의 자기동형군으로 나타난다.

푸앵카레 상반평면의 2-3-7 타일링을 생각하자.

후르비츠 군은 a^2=b^3=c^7=abc=1 로 생성되는 군의 적당한 subgroup X의 quotient 군으로 나타나므로, 상반평면/X 는 이 후르비츠 군을 자기동형군으로 가진다.


메모


관련된 항목들


수학용어번역



관련도서


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'uniformization'}, {'LEMMA': 'theorem'}]