"피보나치 수열의 짝수항"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 피보나치 수열 $\{F_{n}\}_{n\geq 0}$의 짝수항으로 주어지는 수열, 즉 $\{F_{2n}\}_{n\geq 0}$
+
* 피보나치 수열 <math>\{F_{n}\}_{n\geq 0}</math>의 짝수항으로 주어지는 수열, 즉 <math>\{F_{2n}\}_{n\geq 0}</math>
$$
+
:<math>
 
1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181,\cdots
 
1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181,\cdots
$$
+
</math>
* 점화식 $a_{n+2}=3a_{n+1}-a_{n}$
+
* 점화식 <math>a_{n+2}=3a_{n+1}-a_{n}</math>
 
* 다음을 만족한다
 
* 다음을 만족한다
$$
+
:<math>
 
a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}}
 
a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}}
$$
+
</math>
 
* 불변량
 
* 불변량
$$
+
:<math>
 
\frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=3
 
\frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=3
$$
+
</math>
  
  
 
==일반적인 초기조건==
 
==일반적인 초기조건==
 
* 점화식
 
* 점화식
$$
+
:<math>
 
a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}}, a_{0}=\alpha, a_{1}=\beta
 
a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}}, a_{0}=\alpha, a_{1}=\beta
$$
+
</math>
 
* 다음의 선형점화식을 만족한다
 
* 다음의 선형점화식을 만족한다
$$
+
:<math>
 
a_{n+2}=\frac{1+\alpha ^2+\beta ^2}{\alpha  \beta }a_{n+1}-a_{n}
 
a_{n+2}=\frac{1+\alpha ^2+\beta ^2}{\alpha  \beta }a_{n+1}-a_{n}
$$
+
</math>
 
* 처음 몇 개의 항은 다음과 같다
 
* 처음 몇 개의 항은 다음과 같다
$$
+
:<math>
 
\alpha ,\beta ,\frac{1+\beta ^2}{\alpha },\frac{\alpha ^2+\left(1+\beta ^2\right)^2}{\alpha ^2 \beta },\frac{\alpha ^4+2 \alpha ^2 \left(1+\beta ^2\right)+\left(1+\beta ^2\right)^3}{\alpha ^3 \beta ^2},\frac{\alpha ^6+3 \alpha ^2 \left(1+\beta ^2\right)^2+\left(1+\beta ^2\right)^4+\alpha ^4 \left(3+2 \beta ^2\right)}{\alpha ^4 \beta ^3}
 
\alpha ,\beta ,\frac{1+\beta ^2}{\alpha },\frac{\alpha ^2+\left(1+\beta ^2\right)^2}{\alpha ^2 \beta },\frac{\alpha ^4+2 \alpha ^2 \left(1+\beta ^2\right)+\left(1+\beta ^2\right)^3}{\alpha ^3 \beta ^2},\frac{\alpha ^6+3 \alpha ^2 \left(1+\beta ^2\right)^2+\left(1+\beta ^2\right)^4+\alpha ^4 \left(3+2 \beta ^2\right)}{\alpha ^4 \beta ^3}
$$
+
</math>
 
* 불변량
 
* 불변량
$$
+
:<math>
 
\frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=\frac{\alpha ^2+\beta ^2+1}{\alpha  \beta }
 
\frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=\frac{\alpha ^2+\beta ^2+1}{\alpha  \beta }
$$
+
</math>
  
  
40번째 줄: 40번째 줄:
  
 
==관련논문==
 
==관련논문==
* Alperin, Roger C. 2011. “Integer Sequences Generated by $x_{n+1}=\frac {x^2_n+A}{x_{n-1}}$.” The Fibonacci Quarterly. The Official Journal of the Fibonacci Association 49 (4): 362–365. http://www.math.sjsu.edu/~alperin/IntegerA-Sequences.pdf
+
* Alperin, Roger C. 2011. “Integer Sequences Generated by <math>x_{n+1}=\frac {x^2_n+A}{x_{n-1}}</math>.” The Fibonacci Quarterly. The Official Journal of the Fibonacci Association 49 (4): 362–365. http://www.math.sjsu.edu/~alperin/IntegerA-Sequences.pdf
 
* Caldero, Philippe, and Andrei Zelevinsky. 2006. “Laurent Expansions in Cluster Algebras via Quiver Representations.” Moscow Mathematical Journal 6 (3): 411–429, 587.
 
* Caldero, Philippe, and Andrei Zelevinsky. 2006. “Laurent Expansions in Cluster Algebras via Quiver Representations.” Moscow Mathematical Journal 6 (3): 411–429, 587.
  
  
 
[[분류:수열]]
 
[[분류:수열]]

2020년 11월 13일 (금) 10:39 기준 최신판

개요

  • 피보나치 수열 \(\{F_{n}\}_{n\geq 0}\)의 짝수항으로 주어지는 수열, 즉 \(\{F_{2n}\}_{n\geq 0}\)

\[ 1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181,\cdots \]

  • 점화식 \(a_{n+2}=3a_{n+1}-a_{n}\)
  • 다음을 만족한다

\[ a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}} \]

  • 불변량

\[ \frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=3 \]


일반적인 초기조건

  • 점화식

\[ a_{n+2}=\frac{1+a_{n+1}^2}{a_{n}}, a_{0}=\alpha, a_{1}=\beta \]

  • 다음의 선형점화식을 만족한다

\[ a_{n+2}=\frac{1+\alpha ^2+\beta ^2}{\alpha \beta }a_{n+1}-a_{n} \]

  • 처음 몇 개의 항은 다음과 같다

\[ \alpha ,\beta ,\frac{1+\beta ^2}{\alpha },\frac{\alpha ^2+\left(1+\beta ^2\right)^2}{\alpha ^2 \beta },\frac{\alpha ^4+2 \alpha ^2 \left(1+\beta ^2\right)+\left(1+\beta ^2\right)^3}{\alpha ^3 \beta ^2},\frac{\alpha ^6+3 \alpha ^2 \left(1+\beta ^2\right)^2+\left(1+\beta ^2\right)^4+\alpha ^4 \left(3+2 \beta ^2\right)}{\alpha ^4 \beta ^3} \]

  • 불변량

\[ \frac{a_{n-1}^2+a_{n}^2+1}{a_{n-1}a_{n}}=\frac{\alpha ^2+\beta ^2+1}{\alpha \beta } \]


매스매티카 파일 및 계산 리소스


관련논문

  • Alperin, Roger C. 2011. “Integer Sequences Generated by \(x_{n+1}=\frac {x^2_n+A}{x_{n-1}}\).” The Fibonacci Quarterly. The Official Journal of the Fibonacci Association 49 (4): 362–365. http://www.math.sjsu.edu/~alperin/IntegerA-Sequences.pdf
  • Caldero, Philippe, and Andrei Zelevinsky. 2006. “Laurent Expansions in Cluster Algebras via Quiver Representations.” Moscow Mathematical Journal 6 (3): 411–429, 587.