"Affine sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
Gannon 190p, 193p, 196p,371p
 
Gannon 190p, 193p, 196p,371p
 
 
 
 
 
 
  
 
 
 
 
23번째 줄: 19번째 줄:
 
*  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br>
 
*  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br>
 
*  construct a Lie algebra from the new Cartan matrix <math>A'</math><br>
 
*  construct a Lie algebra from the new Cartan matrix <math>A'</math><br>
 <br> Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math><br>
+
*  Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math><br>
 <br>
+
 
 +
 
  
 
 
 
 
38번째 줄: 35번째 줄:
 
 
 
 
  
<h5>level k highest weight representation</h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">fixing a Cartan subalgebra and its dual</h5>
  
integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math><math>\lambda_{i}\in\mathbb{N}</math><br>
+
basis of the Cartan subalgebra H<br><math>h_0=C-h_1</math><br><math>h_1</math><br><math>d=-l_0</math><br>
*  level<br><math>k=\lambda_{0}+\lambda_{1}</math><br>
+
* dual basis for H<br><math>\omega_0,\omega_1,\delta</math><br>
* therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>
 
  
 
 
 
 
50번째 줄: 48번째 줄:
 
<h5>killing form</h5>
 
<h5>killing form</h5>
  
*  invariant symmetric non-deg bilinear forms<br><math><h_i,h_j>=a_jc_j^{-1}A_{ij}</math><br><math><h_i,d>=\alpha_i(d)=0</math> for <math>i \neq 0</math><br><math><h_0,d>=\alpha_0(d)=1</math><br><math><d,d>=0</math><br>
+
*  invariant symmetric non-deg bilinear forms<br><math><h_i,h_j>=A_{ij}</math><br><math><h_0,d>=1</math><br><math><h_1,d>=0</math><br><math><d,d>=0</math><br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>level k highest weight representation</h5>
 +
 
 +
*  integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math>, <math>\lambda_{i}\in\mathbb{N}</math><br>
 +
*  level<br><math>k=\lambda_{0}+\lambda_{1}</math><br>
 +
* therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>

2010년 3월 22일 (월) 14:19 판

Gannon 190p, 193p, 196p,371p

 

 

construction
  •  
  • this is borrowed from affine Kac-Moody algebra entry
  • Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
  • say \(\mathfrak{g}=A_1\),  \(\Phi=\{\alpha\}\)
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • Find the highest root 
    • \(\alpha\)
  • Add another simple root \(\alpha_0\) to the root system \(\Phi\)
    • \(\alpha_0=-\alpha\)
  • Construct a new Cartan matrix
    \(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\)
  • Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
  • construct a Lie algebra from the new Cartan matrix \(A'\)
  • Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
    \(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\)

 

 

basic quantities
  • a_i=1
  • c_i=a_i^{\vee}=1
  • a_{ij}
  • dual Coxeter number
  • Weyl vector

 

 

fixing a Cartan subalgebra and its dual
  • basis of the Cartan subalgebra H
    \(h_0=C-h_1\)
    \(h_1\)
    \(d=-l_0\)
  • dual basis for H
    \(\omega_0,\omega_1,\delta\)

 

 

killing form
  • invariant symmetric non-deg bilinear forms
    \(<h_i,h_j>=A_{ij}\)
    \(<h_0,d>=1\)
    \(<h_1,d>=0\)
    \(<d,d>=0\)

 

 

level k highest weight representation
  • integrable highest weight
    \(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\)
  • level
    \(k=\lambda_{0}+\lambda_{1}\)
  • therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)