"Affine sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
18번째 줄: 18번째 줄:
 
:<math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math><br>
 
:<math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math><br>
  
 
 
  
 
 
  
 
==basic quantities==
 
==basic quantities==
45번째 줄: 43번째 줄:
 
*  simple roots<br>
 
*  simple roots<br>
 
** <math>\alpha_0,\alpha_1</math><br>
 
** <math>\alpha_0,\alpha_1</math><br>
*  positive roots<br>
+
*  positive roots
** <math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math><br>
+
:<math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math>
  
 
 
 
 
108번째 줄: 106번째 줄:
  
 
==denominator formula==
 
==denominator formula==
 
+
* Let $M=M^{*}=\mathbb{Z}\alpha_1$
* [[Weyl-Kac character formula]]<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br>
+
* the affine Weyl group $W=t(M^{*})W^{0}$ where $t(M^{*})$ is the set $t_{\alpha} : H^{*} \to H^{*}$ given by
 
+
$$
 
+
t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta
 
+
$$
 
+
* so $w\in W$ can be written as $(n\alpha_1,\pm \alpha_1)$
 
+
* if $w=(n\alpha_1,\alpha_1)$, $w(e^{\rho})-e^{\rho}=2n\alpha_1-n(2n+1)\delta$
 +
* if $w=(n\alpha_1,-\alpha_1)$, $w(e^{\rho})-e^{\rho}=-(2n+1)\alpha_1-n(2n+1)\delta$
 +
* let us write down the [[Weyl-Kac character formula]] explicitly
 +
$$
 +
{\sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho}) = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\label{WK}
 +
$$
 +
* the LHS of \ref{WK} can be written as
 +
$$
 +
\begin{align}
 +
\sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho})&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n+1)\alpha_1-n(2n+1)\delta}\\
 +
& =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n+1}q^{n(2n+1)}\\
 +
& =\sum_{m}(-1)^m z^(m)q^{m(m-1)/2}
 +
\end{align}
 +
$$
 +
where $z=e^{-\alpha_1}$ and $q=e^{-\delta}$
 +
* the RHS of \ref{WK} can be written as
 +
$$
 +
\begin{align}
 +
\prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\
 +
& = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right)
 +
\end{align}
 +
$$
 +
from <math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math>
 +
* we obtain {{수학노트|url=자코비_삼중곱(Jacobi_triple_product)}}
 
 
 
 
  

2013년 6월 17일 (월) 06:56 판

introduction

 

construction from semisimple Lie algebra

  • this is borrowed from affine Kac-Moody algebra entry
  • Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
  • say \(\mathfrak{g}=A_1\),  \(\Phi=\{\alpha,-\alpha\}\)
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • Find the highest root  \(\alpha\)
  • Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as an independent one now.
  • Construct a new Cartan matrix
    \(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\)
  • Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
  • construct a Lie algebra from the new Cartan matrix \(A'\)
  • Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix

\[\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\]


basic quantities

  • $a_i=1$
  • $c_i=a_i^{\vee}=1$
  • $a_{ij}$
  • coxeter number 2
  • dual Coxeter number 2
  • Weyl vector

 

 

root systems

  • \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
  • real roots
    • \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
  • imaginary roots   
    • \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
    • \(\delta=\alpha_0+\alpha_1\)
  • simple roots
    • \(\alpha_0,\alpha_1\)
  • positive roots

\[\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\]

 

 

fixing a Cartan subalgebra and its dual

  • H is a 3-dimensional space
  • basis of the Cartan subalgebra H (this defines C and l_0 also)
    \(h_0=C-h_1\)
    \(h_1\)
    \(d=-l_0\)
  • basis of the dual of H \[\omega_0,\alpha_0,\alpha_1\]
  • pairing

$$ \begin{array}{cccc} {} & \alpha _0 & \alpha _1 & \omega _0 \\ h_0 & 2 & -2 & 1 \\ h_1 & -2 & 2 &0 \\ d & 1 & 0 & 0 \\ \end{array} $$

  • dual basis for H \[\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1\]

$$ \begin{array}{cccc} {} & \omega_0 & \omega_1 & \delta \\ h_0 & 1 & 0 & 0 \\ h_1 & 0 & 1 &0 \\ d & 0 & 0 & a_0=1 \\ \end{array} $$

  • Weyl vector \[\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1\]

 

killing form

  • invariant symmetric non-deg bilinear forms, $\langle h_i,h_j\rangle =A_{ij}$, $\langle h_0,d\rangle =1$, $\langle h_1,d\rangle =0$, $\langle d,d\rangle =0$,
  • with centers (note that $C=h_0+h_1$), $\langle C,h_0\rangle =0$, $\langle C,h_1\rangle =0$, $\langle C,d\rangle =1$,


 

explicit construction

  • start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $,
  • make a vector space from it,
  • Construct a Loop algbera $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$
  • Let $\alpha(m)=\alpha\otimes t^m$,
  • Add a central element to get a central extension $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$, and give a bracket $$[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c$$

$$[H(m),E(n)]=2E\otimes t^{m+n}$$ $$[H(m),F(n)]=-2F\otimes t^{m+n}$$ $$[E(m),E(n)]=[F(m),F(n)]=0$$ $$\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0$$

  • Add a derivation $d$, $d=t\frac{d}{dt}$ to get $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$

$$d(\alpha(n))=n\alpha(n)$$ $$d(c)=0$$ $$\langle c,d\rangle =0$$

  • Define a Lie bracket $[d,x]=d(x)$


 

denominator formula

  • Let $M=M^{*}=\mathbb{Z}\alpha_1$
  • the affine Weyl group $W=t(M^{*})W^{0}$ where $t(M^{*})$ is the set $t_{\alpha} : H^{*} \to H^{*}$ given by

$$ t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta $$

  • so $w\in W$ can be written as $(n\alpha_1,\pm \alpha_1)$
  • if $w=(n\alpha_1,\alpha_1)$, $w(e^{\rho})-e^{\rho}=2n\alpha_1-n(2n+1)\delta$
  • if $w=(n\alpha_1,-\alpha_1)$, $w(e^{\rho})-e^{\rho}=-(2n+1)\alpha_1-n(2n+1)\delta$
  • let us write down the Weyl-Kac character formula explicitly

$$ {\sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho}) = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\label{WK} $$

  • the LHS of \ref{WK} can be written as

$$ \begin{align} \sum_{w\in W} (-1)^{\ell(w)}(w(e^{\rho})-e^{\rho})&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n+1)\alpha_1-n(2n+1)\delta}\\ & =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n+1}q^{n(2n+1)}\\ & =\sum_{m}(-1)^m z^(m)q^{m(m-1)/2} \end{align} $$ where $z=e^{-\alpha_1}$ and $q=e^{-\delta}$

  • the RHS of \ref{WK} can be written as

$$ \begin{align} \prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\ & = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right) \end{align} $$ from \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)

 

level k highest weight representation

  • integrable highest weight
    \(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\)
  • level
    \(k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\)
  • therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)

 

 

central charge

  • central charge (depends on the level only)
    \(c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\)
  • conformal weight
    \(h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\)
  • definition of conformal anomaly
    \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\)
  • strange formula
    \(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\)
  • very strange formula
  • conformal anomaly 
    \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}\)

 

 

 

vertex operator construction

 

 

 

related items

 

computational resource

 

books

  • Gannon 190p, 193p, 196p,371p

 

articles

  • Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. Communications in Mathematical Physics 62 (1): 43-53. doi:10.1007/BF01940329.