"Durfee 사각형 항등식(Durfee rectangle identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Durfee 사각형 항등식(Durfee rectangle identity)로 바꾸었습니다.)
1번째 줄: 1번째 줄:
*  (Durfee rectangle identity)<br><math>l \in \mathbb{Z}</math>,<br><math>\sum_{n,m\geq 0, n-m=l}\frac{q^{nm}}{(q)_n(q)_m}=\frac{1}{(q)_{\infty}}</math> 또는<br><math>\sum_{n\geq 0}\frac{q^{n(n+l)}}{(q)_n(q)_{n+l}}=\frac{1}{(q)_{\infty}}</math><br>
+
*  (Durfee rectangle identity)<br><math>l \in \mathbb{N}</math>,<br><math>\sum_{n,m\geq 0, n-m=l}\frac{q^{nm}}{(q)_n(q)_m}=\frac{1}{(q)_{\infty}}</math> 또는<br><math>\sum_{n\geq 0}\frac{q^{n(n+l)}}{(q)_n(q)_{n+l}}=\frac{1}{(q)_{\infty}}</math><br>
 +
 
 +
 
 +
 
 +
(증명)
 +
 
 +
 
  
 
 
 
 
6번째 줄: 12번째 줄:
  
 
(따름정리)
 
(따름정리)
 +
 +
 
  
 
<math>\sum_{n=0}^\infty p(n)q^n = 1+\sum_{n=1}\frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2}</math>
 
<math>\sum_{n=0}^\infty p(n)q^n = 1+\sum_{n=1}\frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2}</math>
 +
 +
 
 +
 +
 
  
 
 
 
 
  
 
(증명)
 
(증명)
 +
 +
 
  
 
http://cfranc.wordpress.com/2009/11/24/an-identity-of-ramanujan/ ■
 
http://cfranc.wordpress.com/2009/11/24/an-identity-of-ramanujan/ ■
 +
 +
 
  
 
 
 
 
27번째 줄: 43번째 줄:
 
(pf)
 
(pf)
  
<math>\frac{\sum_{l\geq 0}q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}=\sum_{l\geq 0}\frac{q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}=\sum_{l\geq 0}\sum_{n,m\geq 0, n-m=l}\frac{q^{\frac{a}{2}l^2+bl+c}q^{nm}}{(q)_n(q)_m}</math>
+
<math>\frac{\sum_{l\geq 0}q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}=\sum_{l\geq 0}\frac{q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}</math>
 +
 
 +
<math>l=n-m</math> 로 두면, 
  
<math>l=n-m</math>
+
<math>=\sum_{l\geq 0}\sum_{n,m\geq 0, n-m=l}\frac{q^{\frac{a}{2}l^2+bl+c}q^{nm}}{(q)_n(q)_m}</math>
  
 
<math>=\sum_{n,m\geq 0}\frac{q^{nm+\frac{a}{2}(n-m)^2+b(n-m)+c}}{(q)_n(q)_m}=\sum_{n,m\geq 0}\frac{q^{\frac{1}{2}(an^2+(2-2a)mn+am^2)+b(n-m)+c}}{(q)_n(q)_m}</math>
 
<math>=\sum_{n,m\geq 0}\frac{q^{nm+\frac{a}{2}(n-m)^2+b(n-m)+c}}{(q)_n(q)_m}=\sum_{n,m\geq 0}\frac{q^{\frac{1}{2}(an^2+(2-2a)mn+am^2)+b(n-m)+c}}{(q)_n(q)_m}</math>
  
 .
+
  
 
 
 
 

2011년 11월 15일 (화) 05:38 판

  • (Durfee rectangle identity)
    \(l \in \mathbb{N}\),
    \(\sum_{n,m\geq 0, n-m=l}\frac{q^{nm}}{(q)_n(q)_m}=\frac{1}{(q)_{\infty}}\) 또는
    \(\sum_{n\geq 0}\frac{q^{n(n+l)}}{(q)_n(q)_{n+l}}=\frac{1}{(q)_{\infty}}\)

 

(증명)

 

 

 

(따름정리)

 

\(\sum_{n=0}^\infty p(n)q^n = 1+\sum_{n=1}\frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2}\)

 

 

 

(증명)

 

http://cfranc.wordpress.com/2009/11/24/an-identity-of-ramanujan/ ■

 

 

 

 

응용

\(\frac{\sum_{l\geq 0}q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}=\sum_{n,m\geq 0}\frac{q^{\frac{1}{2}(an^2+(2-2a)mn+am^2)+b(n-m)+c}}{(q)_n(q)_m}\)

(pf)

\(\frac{\sum_{l\geq 0}q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}=\sum_{l\geq 0}\frac{q^{\frac{a}{2}l^2+bl+c}}{(q)_{\infty}}\)

\(l=n-m\) 로 두면, 

\(=\sum_{l\geq 0}\sum_{n,m\geq 0, n-m=l}\frac{q^{\frac{a}{2}l^2+bl+c}q^{nm}}{(q)_n(q)_m}\)

\(=\sum_{n,m\geq 0}\frac{q^{nm+\frac{a}{2}(n-m)^2+b(n-m)+c}}{(q)_n(q)_m}=\sum_{n,m\geq 0}\frac{q^{\frac{1}{2}(an^2+(2-2a)mn+am^2)+b(n-m)+c}}{(q)_n(q)_m}\)

 

 

 

http://www.springerlink.com/content/l842207736576587/

http://siba-ese.unisalento.it/index.php/quadmat/article/download/6953/6317