Elements of finite order (EFO) in Lie groups
둘러보기로 가기
검색하러 가기
introduction
- explicit formulas for the number of conjugacy classes of EFOs in Lie groups
- appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of \(G_2\) holonomy
- \(N(G,m)\) : number of conjugacy classes of \(G\) in \(E(G,m)\)
- \(N(G,m,s)\) : number of conjugacy classes of \(G\) in \(E(G,m,s)\)
EFO in unitary groups
\(U(n)\)
- \(N(G,m)= {n+m-1\choose m-1}\)
- \(N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}\)
\(SU(n)\)
- \(N(G,m)= \frac{1}{m}{n+m-1\choose m-1}\) if \((n,m)=1\)
- \(N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}\) if \((n,m)=1\)
computational resource
OEIS
- type A http://oeis.org/A008610
- type C http://oeis.org/A005993