Elements of finite order (EFO) in Lie groups

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of \(G_2\) holonomy
  • \(N(G,m)\) : number of conjugacy classes of \(G\) in \(E(G,m)\)
  • \(N(G,m,s)\) : number of conjugacy classes of \(G\) in \(E(G,m,s)\)

EFO in unitary groups

\(U(n)\)

  • \(N(G,m)= {n+m-1\choose m-1}\)
  • \(N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}\)

\(SU(n)\)

  • \(N(G,m)= \frac{1}{m}{n+m-1\choose m-1}\) if \((n,m)=1\)
  • \(N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}\) if \((n,m)=1\)


related items


computational resource

OEIS


questions