Mahler measure

수학노트
둘러보기로 가기 검색하러 가기

Mahler measure for single variable polynomial

def (Mahler measure)

For \(P(x)=a \prod_{j=1}^{d} (x-\alpha_j) \in \mathbb{C}[x]\), define \[ M(P)=|a|\prod_{j=1}^d \max(|\alpha_j|,1) \]

looking for big primes

  • \(P(x)=\prod_{i} (x-\alpha_i) \in \mathbb{Z}[x]\) be monic
  • for each \(n\geq 1\), let \(\Delta_n=\prod_{i}(\alpha_i^n-1)\)
  • find primes among the factors of \(\Delta_n\) as factoring \(\Delta_n\) is much easier than factoring a random number of the same size
  • as \(\Delta_m|\Delta_n\) if \(m|n\), it is enough to consider \(\Delta_p/\Delta_1\)
  • \(\Delta_n\) grows like \(M(P)^n\)

\[ \lim_{n\to \infty} \frac{|\alpha^{n+1}-1|}{|\alpha^{n}-1|} = \begin{cases} |\alpha|\, \mbox{ if } |\alpha|> 1, \\ 1\, \mbox{ if }|\alpha|<1 \end{cases} \]

  • it is natural to consider polynomials \(P\) with a small value of \(M(P)\)

examples

  • \(m(x^3+x+1)=0.382245085840\cdots\)
  • \(m(x^3-x-1)=0.28119957432\cdots\)

Lehmer's question

Question

Can \(m(P)\) be arbtrarily small but positive for \(P(x)\in \mathbb{Z}[x]\)?

  • The following is the smallest known positive value of \(m(P)\)

\[m(x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1)=0.1623576120\cdots\] \[M(x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1)=1.1762808182599175\cdots\]

Mahler's multivariate generalization

logarithmic Mahler measure

  • We also define the logarithmic Mahler measure \(m(p):=\log M(P)\)
  • one can compute \(m(P)\) by Jensen's formula

\[ \frac{1}{2\pi i}\int_{|x|=1} \log|P(x)| \; \frac{dx}{x} = \sum_{\alpha} \log^{+} |\alpha| \] where \(\log^{+} |\alpha|=\log \max(|\alpha|,1)\)

  • Jensen's formula

\[ \int_{0}^{1}\log |e^{2\pi i \theta}-\alpha|\, \;d\theta=\log^{+}|\alpha| \]

multivariate logarithmic Mahler measure

  • for a Laurent polynomial \(P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]\), the (logarithmic) Mahler measure is defined to be

\[ \begin{aligned} m(P):&=\int_{0}^{1}\cdots \int_{0}^{1} \log |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n\\ &= \frac{1}{(2\pi i)^n}\int_{|x_1|=\dots=|x_n|=1} \log|P(x_1,\dots,x_n)| \; \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n} \end{aligned} \]

  • no explicit formula is known for polynomials in several variables

formula of Smyth

thm [Smyth1981]

\[ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots \label{Smyth1} \]

\[ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots \]

Multivariate Mahler measure

related items

computational resource


encyclopedia


expositions


lecture notes

articles

  • van Ittersum, Jan-Willem. “An Equivariant Version of Lehmer’s Conjecture on Heights.” arXiv:1602.01749 [math], February 4, 2016. http://arxiv.org/abs/1602.01749.
  • Abdalaoui, El Houcein El. “Combinatorial Analysis of Polynomial Flatness Problem, Mahler Measure and Ergodic Theory.” arXiv:1508.06439 [math], August 26, 2015. http://arxiv.org/abs/1508.06439.
  • Defant, Andreas, and Mieczysław Mastyło. “\(L^p\)-Norms and Mahler’s Measure of Polynomials on the \(n\)-Dimensional Torus.” arXiv:1508.05556 [math], August 22, 2015. http://arxiv.org/abs/1508.05556.
  • Samuels, Charles L. “Continued Fraction Expansions in Connection with the Metric Mahler Measure.” arXiv:1508.01726 [math], August 7, 2015. http://arxiv.org/abs/1508.01726.
  • Cochrane, Todd, R. M. S. Dissanayake, Nicholas Donohoue, M. I. M. Ishak, Vincent Pigno, Chris Pinner, and Craig Spencer. ‘Minimal Mahler Measure in Real Quadratic Fields’. arXiv:1410.4482 [math], 16 October 2014. http://arxiv.org/abs/1410.4482.
  • Erdelyi, Tamas. “The Mahler Measure of the Rudin-Shapiro Polynomials.” arXiv:1406.2233 [math], June 9, 2014. http://arxiv.org/abs/1406.2233.
  • Zudilin, Wadim. 2013. “Regulator of Modular Units and Mahler Measures”. ArXiv e-print 1304.3869. http://arxiv.org/abs/1304.3869.
  • A dynamical interpretation of the global canonical height on an elliptic curve
  • C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700
  • Boyd, David W. 1998. “Mahler’s Measure and Special Values of \(L\)-Functions.” Experimental Mathematics 7 (1): 37–82.
  • Deninger, Christopher. Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions Journal of the American Mathematical Society 10.2 (1997): 259-282.
  • [Smyth1981] Smyth, C. J. 1981. “On Measures of Polynomials in Several Variables.” Bulletin of the Australian Mathematical Society 23 (1): 49–63. doi:http://dx.doi.org/10.1017/S0004972700006894.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'mahler'}, {'LEMMA': 'measure'}]