"P진 감마함수(p-adic gamma function)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 25개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 +
* [[감마함수]]와 유사한 성질을 가지는 p진 해석학의 함수
 +
  
 
+
==정의==
 +
* 자연수 <math>n</math> 에 대하여 다음과 같이 <math>\Gamma_p</math>의 값을 정의
 +
:<math>\Gamma_p(n):=(-1)^n\prod_{(i,p)=1}^{n-1} i</math>
 +
* 이를 <math>\mathbb{Z}_p</math>에서의 연속함수로 확장하여, p-adic 감마함수 <math>\Gamma_p:\mathbb{Z}_p\to \mathbb{Z}_p^{\times}</math>를 얻음
  
 
+
 +
==예==
 +
* 아래는 <math>p=2,3,5,7</math>일 때, <math>\Gamma_p</math>의 값이다
 +
:<math>
 +
\begin{array}{c|cccc}
 +
n & \Gamma _2(n) & \Gamma _3(n) & \Gamma _5(n) & \Gamma _7(n) \\
 +
\hline
 +
-10 & -\frac{1}{945} & -\frac{1}{22400} & \frac{1}{72576} & -\frac{1}{518400} \\
 +
-9 & \frac{1}{945} & -\frac{1}{2240} & -\frac{1}{72576} & -\frac{1}{51840} \\
 +
-8 & \frac{1}{105} & \frac{1}{2240} & -\frac{1}{8064} & -\frac{1}{5760} \\
 +
-7 & -\frac{1}{105} & \frac{1}{280} & -\frac{1}{1008} & -\frac{1}{720} \\
 +
-6 & -\frac{1}{15} & \frac{1}{40} & -\frac{1}{144} & \frac{1}{720} \\
 +
-5 & \frac{1}{15} & -\frac{1}{40} & -\frac{1}{24} & \frac{1}{120} \\
 +
-4 & \frac{1}{3} & -\frac{1}{8} & \frac{1}{24} & \frac{1}{24} \\
 +
-3 & -\frac{1}{3} & -\frac{1}{2} & \frac{1}{6} & \frac{1}{6} \\
 +
-2 & -1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
 +
-1 & 1 & 1 & 1 & 1 \\
 +
0 & 1 & 1 & 1 & 1 \\
 +
1 & -1 & -1 & -1 & -1 \\
 +
2 & 1 & 1 & 1 & 1 \\
 +
3 & -1 & -2 & -2 & -2 \\
 +
4 & 3 & 2 & 6 & 6 \\
 +
5 & -3 & -8 & -24 & -24 \\
 +
6 & 15 & 40 & 24 & 120 \\
 +
7 & -15 & -40 & -144 & -720 \\
 +
8 & 105 & 280 & 1008 & 720 \\
 +
9 & -105 & -2240 & -8064 & -5760 \\
 +
10 & 945 & 2240 & 72576 & 51840
 +
\end{array}
 +
</math>
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
 
  
 
+
==기본적인 성질==
 +
* <math>x\in p\mathbb{Z}_p</math> 일 때, <math>\Gamma_p(x+1)=-\Gamma_p(x)</math>
 +
* <math>x\not \in p\mathbb{Z}_p</math> 일 때, <math>\Gamma_p(x+1)=-x\Gamma_p(x)</math>
 +
* <math>x \equiv y \pmod {p^r}</math> 이면 <math>\Gamma_p(x)\equiv \Gamma_p(y) \pmod {p^r}</math>
 +
* <math>p>3</math> 이면 <math>|\Gamma_p(x)-\Gamma_p(y)|_p \leq |x-y|_p</math>
 +
===테이블===
 +
* 소수 <math>p</math>와 정수 <math>x</math>에 대하여, <math>\operatorname{ord}_p x</math>를 <math>a\equiv 0\pmod {p^m}</math>을 만족하는 최대의 <math>m\in \mathbb{Z}_{\geq 0}</math>으로 정의하자
 +
* 유리수 <math>x=a/b</math>에 대해서는 <math>\operatorname{ord}_p x:=\operatorname{ord}_p a-\operatorname{ord}_p b</math>
  
<h5>정의</h5>
+
:<math>
 +
\begin{array}{c|c|c}
 +
\{x,y\} & \operatorname{ord}_5 (x-y) & \operatorname{ord}_5 \left(\Gamma _5(x)-\Gamma _5(y)\right) \\
 +
\hline
 +
\{-5,-4\} & 0 & 0 \\
 +
\{-5,-3\} & 0 & 1 \\
 +
\{-5,-2\} & 0 & 0 \\
 +
\{-5,-1\} & 0 & 2 \\
 +
\{-5,0\} & 1 & 2 \\
 +
\{-5,1\} & 0 & 0 \\
 +
\{-5,2\} & 0 & 2 \\
 +
\{-5,3\} & 0 & 0 \\
 +
\{-5,4\} & 0 & 1 \\
 +
\{-5,5\} & 1 & 2 \\
 +
\{-4,-3\} & 0 & 0 \\
 +
\{-4,-2\} & 0 & 0 \\
 +
\{-4,-1\} & 0 & 0 \\
 +
\{-4,0\} & 0 & 0 \\
 +
\{-4,1\} & 1 & 2 \\
 +
\{-4,2\} & 0 & 0 \\
 +
\{-4,3\} & 0 & 0 \\
 +
\{-4,4\} & 0 & 0 \\
 +
\{-4,5\} & 0 & 0 \\
 +
\{-3,-2\} & 0 & 0 \\
 +
\{-3,-1\} & 0 & 1 \\
 +
\{-3,0\} & 0 & 1 \\
 +
\{-3,1\} & 0 & 0 \\
 +
\{-3,2\} & 1 & 1 \\
 +
\{-3,3\} & 0 & 0 \\
 +
\{-3,4\} & 0 & 1 \\
 +
\{-3,5\} & 0 & 1 \\
 +
\{-2,-1\} & 0 & 0 \\
 +
\{-2,0\} & 0 & 0 \\
 +
\{-2,1\} & 0 & 0 \\
 +
\{-2,2\} & 0 & 0 \\
 +
\{-2,3\} & 1 & 1 \\
 +
\{-2,4\} & 0 & 0 \\
 +
\{-2,5\} & 0 & 0 \\
 +
\{-1,0\} & 0 & \infty  \\
 +
\{-1,1\} & 0 & 0 \\
 +
\{-1,2\} & 0 & \infty  \\
 +
\{-1,3\} & 0 & 0 \\
 +
\{-1,4\} & 1 & 1 \\
 +
\{-1,5\} & 0 & 2 \\
 +
\{0,1\} & 0 & 0 \\
 +
\{0,2\} & 0 & \infty  \\
 +
\{0,3\} & 0 & 0 \\
 +
\{0,4\} & 0 & 1 \\
 +
\{0,5\} & 1 & 2 \\
 +
\{1,2\} & 0 & 0 \\
 +
\{1,3\} & 0 & 0 \\
 +
\{1,4\} & 0 & 0 \\
 +
\{1,5\} & 0 & 0 \\
 +
\{2,3\} & 0 & 0 \\
 +
\{2,4\} & 0 & 1 \\
 +
\{2,5\} & 0 & 2 \\
 +
\{3,4\} & 0 & 0 \\
 +
\{3,5\} & 0 & 0 \\
 +
\{4,5\} & 0 & 1
 +
\end{array}
 +
</math>
  
자연수 <math>n</math> 에 대하여 다음과 같이 정의
+
 
 
<math>\Gamma_p(n)=(-1)^n\prod_{(i,p)=1}^{n-1} i</math>
 
 
 
이를 <math>\mathbb{Z}_p</math>로 연속함수로 확장하여, p-adic 감마함수를 얻음
 
 
 
 
 
 
 
 
 
 
 
<h5>기본적인 성질</h5>
 
 
 
<math>x\in p\mathbb{Z}_p</math> 일 때, <math>\Gamma_p(x+1)=-\Gamma_p(x)</math>
 
 
 
<math>x\not \in p\mathbb{Z}_p</math> 일 때, <math>\Gamma_p(x+1)=-x\Gamma_p(x)</math>
 
 
 
<math>x \equiv y \pmod {p^r}</math> 이면
 
 
 
<math>p>3</math> 이면 <math>|\Gamma_p(x)-\Gamma_p(y)|_p \leq |x-y|_p</math>
 
 
 
 
 
 
 
 
 
 
 
<h5>반사공식</h5>
 
 
 
<math>p\neq 2</math>이고, <math>x\in \mathbb{Z}_p</math> 에 대하여 다음 반사공식이 성립
 
 
 
<math>\Gamma_p(x)\Gamma_p(1-x)=(-1)^{l(x)}</math>
 
  
 +
==반사공식==
 +
* <math>p\neq 2</math>이고, <math>x\in \mathbb{Z}_p</math> 에 대하여 다음 반사공식이 성립
 +
:<math>\Gamma_p(x)\Gamma_p(1-x)=(-1)^{l(x)}</math>
 
여기서 <math>x\equiv l(x) \pmod p</math>, <math>l(x)\in \{1,2,\cdots, p\}</math>
 
여기서 <math>x\equiv l(x) \pmod p</math>, <math>l(x)\in \{1,2,\cdots, p\}</math>
 +
:<math>
 +
\begin{array}{c|cccc}
 +
x & \Gamma _3(x) & \Gamma _3(1-x) & \Gamma _3(1-x) \Gamma _3(x) & (-1)^{l(x)} \\
 +
\hline
 +
-10 & -\frac{1}{22400} & -22400 & 1 & 1 \\
 +
-9 & -\frac{1}{2240} & 2240 & -1 & -1 \\
 +
-8 & \frac{1}{2240} & -2240 & -1 & -1 \\
 +
-7 & \frac{1}{280} & 280 & 1 & 1 \\
 +
-6 & \frac{1}{40} & -40 & -1 & -1 \\
 +
-5 & -\frac{1}{40} & 40 & -1 & -1 \\
 +
-4 & -\frac{1}{8} & -8 & 1 & 1 \\
 +
-3 & -\frac{1}{2} & 2 & -1 & -1 \\
 +
-2 & \frac{1}{2} & -2 & -1 & -1 \\
 +
-1 & 1 & 1 & 1 & 1 \\
 +
0 & 1 & -1 & -1 & -1 \\
 +
1 & -1 & 1 & -1 & -1 \\
 +
2 & 1 & 1 & 1 & 1 \\
 +
3 & -2 & \frac{1}{2} & -1 & -1 \\
 +
4 & 2 & -\frac{1}{2} & -1 & -1 \\
 +
5 & -8 & -\frac{1}{8} & 1 & 1 \\
 +
6 & 40 & -\frac{1}{40} & -1 & -1 \\
 +
7 & -40 & \frac{1}{40} & -1 & -1 \\
 +
8 & 280 & \frac{1}{280} & 1 & 1 \\
 +
9 & -2240 & \frac{1}{2240} & -1 & -1 \\
 +
10 & 2240 & -\frac{1}{2240} & -1 & -1
 +
\end{array}
 +
</math>
 +
  
 
+
==역사==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
  
<h5>역사</h5>
+
* [[수학사 연표]]
  
* [[수학사연표 (역사)|수학사연표]]
+
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>관련된 항목들</h5>
 
  
 +
==관련된 항목들==
 +
* [[P진 해석학(p-adic analysis)]]
 
* [[감마함수]]
 
* [[감마함수]]
  
 
+
 +
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxeS1SUlM0MWxYNWc/edit
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
==사전 형태의 자료==
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* https://en.wikipedia.org/wiki/P-adic_gamma_function
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
* https://en.wikipedia.org/wiki/Gross–Koblitz_formula
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
  
 
+
==에세이, 리뷰, 강의노트==
 +
* Diamond, Jack. 1984. “P-Adic Gamma Functions and Their Applications.” In Number Theory, edited by David V. Chudnovsky, Gregory V. Chudnovsky, Harvey Cohn, and Melvin B. Nathanson, 168–75. Lecture Notes in Mathematics 1052. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0071542.
  
<h5>사전 형태의 자료</h5>
 
  
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
+
==관련논문==
 
+
* Barman, Rupam, and Neelam Saikia. “Supercongruences for Truncated Hypergeometric Series and P-Adic Gamma Function.” arXiv:1507.07391 [math], July 27, 2015. http://arxiv.org/abs/1507.07391.
 
+
* Fuselier, Jenny G., and Dermot McCarthy. “Hypergeometric Type Identities in the <math>p</math>-Adic Setting and Modular Forms.” arXiv:1407.6670 [math], July 24, 2014. http://arxiv.org/abs/1407.6670.
 
+
* Robert, Alain M., [http://www.numdam.org/item?id=RSMUP_2001__105__157_0 The Gross Koblitz formula revisited], Rend. Sem. Mat. Univ. Padova 105 (2001) 157 170.
<h5>관련논문</h5>
+
* [http://archive.numdam.org/ARCHIVE/GAU/GAU_1981-1982__9_3/GAU_1981-1982__9_3_A18_0/GAU_1981-1982__9_3_A18_0.pdf The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer]
 
 
* [http://www.springerlink.com/content/bq28602x02m17760/ p-adic gamma functions and their applications]<br>
 
** Jack Diamond, 1984
 
* [http://archive.numdam.org/ARCHIVE/GAU/GAU_1981-1982__9_3/GAU_1981-1982__9_3_A18_0/GAU_1981-1982__9_3_A18_0.pdf The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer]<br>
 
 
** L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p
 
** L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p
* [http://www.jstor.org/stable/1971226 Gauss Sums and the p-adic Γ-function]<br>
+
* Gross, Benedict H., and Neal Koblitz. 1979. “Gauss Sums and the p-Adic <math>\Gamma</math>-Function.The Annals of Mathematics 109 (3): 569. doi:10.2307/1971226.
** Benedict H. Gross and Neal Koblitz, The Annals of Mathematics, Second Series, Vol. 109, No. 3 (May, 1979), pp. 569-581
+
* Diamond, Jack. 1977. “The P-Adic Log Gamma Function and P-Adic Euler Constants.” Transactions of the American Mathematical Society 233 (October): 321. doi:10.2307/1997840.
* The p-adic log gamma function and p-adic Euler constants<br>
+
* Morita, Yasuo, [http://hdl.handle.net/2261/6494 A p-adic analogue of the <math>\Gamma</math>-function], Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266
** J. Diamond, Trans. Amer. Math. Soc. 233 (1977), 321–337
 
* [http://hdl.handle.net/2261/6494 A p-adic analogue of the $\Gamma$-function]<br>
 
** Morita, Yasuo, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
<h5>관련도서 및 추천도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
  
 
 
  
<h5>블로그</h5>
+
[[분류:정수론]]
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==메타데이터==
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
===위키데이터===
* [http://math.dongascience.com/ 수학동아]
+
* ID : [https://www.wikidata.org/wiki/Q7116917 Q7116917]
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
===Spacy 패턴 목록===
* [http://betterexplained.com/ BetterExplained]
+
* [{'LOWER': 'p'}, {'OP': '*'}, {'LOWER': 'adic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 04:50 기준 최신판

개요

  • 감마함수와 유사한 성질을 가지는 p진 해석학의 함수


정의

  • 자연수 \(n\) 에 대하여 다음과 같이 \(\Gamma_p\)의 값을 정의

\[\Gamma_p(n):=(-1)^n\prod_{(i,p)=1}^{n-1} i\]

  • 이를 \(\mathbb{Z}_p\)에서의 연속함수로 확장하여, p-adic 감마함수 \(\Gamma_p:\mathbb{Z}_p\to \mathbb{Z}_p^{\times}\)를 얻음


  • 아래는 \(p=2,3,5,7\)일 때, \(\Gamma_p\)의 값이다

\[ \begin{array}{c|cccc} n & \Gamma _2(n) & \Gamma _3(n) & \Gamma _5(n) & \Gamma _7(n) \\ \hline -10 & -\frac{1}{945} & -\frac{1}{22400} & \frac{1}{72576} & -\frac{1}{518400} \\ -9 & \frac{1}{945} & -\frac{1}{2240} & -\frac{1}{72576} & -\frac{1}{51840} \\ -8 & \frac{1}{105} & \frac{1}{2240} & -\frac{1}{8064} & -\frac{1}{5760} \\ -7 & -\frac{1}{105} & \frac{1}{280} & -\frac{1}{1008} & -\frac{1}{720} \\ -6 & -\frac{1}{15} & \frac{1}{40} & -\frac{1}{144} & \frac{1}{720} \\ -5 & \frac{1}{15} & -\frac{1}{40} & -\frac{1}{24} & \frac{1}{120} \\ -4 & \frac{1}{3} & -\frac{1}{8} & \frac{1}{24} & \frac{1}{24} \\ -3 & -\frac{1}{3} & -\frac{1}{2} & \frac{1}{6} & \frac{1}{6} \\ -2 & -1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & -1 & -1 \\ 2 & 1 & 1 & 1 & 1 \\ 3 & -1 & -2 & -2 & -2 \\ 4 & 3 & 2 & 6 & 6 \\ 5 & -3 & -8 & -24 & -24 \\ 6 & 15 & 40 & 24 & 120 \\ 7 & -15 & -40 & -144 & -720 \\ 8 & 105 & 280 & 1008 & 720 \\ 9 & -105 & -2240 & -8064 & -5760 \\ 10 & 945 & 2240 & 72576 & 51840 \end{array} \]


기본적인 성질

  • \(x\in p\mathbb{Z}_p\) 일 때, \(\Gamma_p(x+1)=-\Gamma_p(x)\)
  • \(x\not \in p\mathbb{Z}_p\) 일 때, \(\Gamma_p(x+1)=-x\Gamma_p(x)\)
  • \(x \equiv y \pmod {p^r}\) 이면 \(\Gamma_p(x)\equiv \Gamma_p(y) \pmod {p^r}\)
  • \(p>3\) 이면 \(|\Gamma_p(x)-\Gamma_p(y)|_p \leq |x-y|_p\)

테이블

  • 소수 \(p\)와 정수 \(x\)에 대하여, \(\operatorname{ord}_p x\)를 \(a\equiv 0\pmod {p^m}\)을 만족하는 최대의 \(m\in \mathbb{Z}_{\geq 0}\)으로 정의하자
  • 유리수 \(x=a/b\)에 대해서는 \(\operatorname{ord}_p x:=\operatorname{ord}_p a-\operatorname{ord}_p b\)

\[ \begin{array}{c|c|c} \{x,y\} & \operatorname{ord}_5 (x-y) & \operatorname{ord}_5 \left(\Gamma _5(x)-\Gamma _5(y)\right) \\ \hline \{-5,-4\} & 0 & 0 \\ \{-5,-3\} & 0 & 1 \\ \{-5,-2\} & 0 & 0 \\ \{-5,-1\} & 0 & 2 \\ \{-5,0\} & 1 & 2 \\ \{-5,1\} & 0 & 0 \\ \{-5,2\} & 0 & 2 \\ \{-5,3\} & 0 & 0 \\ \{-5,4\} & 0 & 1 \\ \{-5,5\} & 1 & 2 \\ \{-4,-3\} & 0 & 0 \\ \{-4,-2\} & 0 & 0 \\ \{-4,-1\} & 0 & 0 \\ \{-4,0\} & 0 & 0 \\ \{-4,1\} & 1 & 2 \\ \{-4,2\} & 0 & 0 \\ \{-4,3\} & 0 & 0 \\ \{-4,4\} & 0 & 0 \\ \{-4,5\} & 0 & 0 \\ \{-3,-2\} & 0 & 0 \\ \{-3,-1\} & 0 & 1 \\ \{-3,0\} & 0 & 1 \\ \{-3,1\} & 0 & 0 \\ \{-3,2\} & 1 & 1 \\ \{-3,3\} & 0 & 0 \\ \{-3,4\} & 0 & 1 \\ \{-3,5\} & 0 & 1 \\ \{-2,-1\} & 0 & 0 \\ \{-2,0\} & 0 & 0 \\ \{-2,1\} & 0 & 0 \\ \{-2,2\} & 0 & 0 \\ \{-2,3\} & 1 & 1 \\ \{-2,4\} & 0 & 0 \\ \{-2,5\} & 0 & 0 \\ \{-1,0\} & 0 & \infty \\ \{-1,1\} & 0 & 0 \\ \{-1,2\} & 0 & \infty \\ \{-1,3\} & 0 & 0 \\ \{-1,4\} & 1 & 1 \\ \{-1,5\} & 0 & 2 \\ \{0,1\} & 0 & 0 \\ \{0,2\} & 0 & \infty \\ \{0,3\} & 0 & 0 \\ \{0,4\} & 0 & 1 \\ \{0,5\} & 1 & 2 \\ \{1,2\} & 0 & 0 \\ \{1,3\} & 0 & 0 \\ \{1,4\} & 0 & 0 \\ \{1,5\} & 0 & 0 \\ \{2,3\} & 0 & 0 \\ \{2,4\} & 0 & 1 \\ \{2,5\} & 0 & 2 \\ \{3,4\} & 0 & 0 \\ \{3,5\} & 0 & 0 \\ \{4,5\} & 0 & 1 \end{array} \]


반사공식

  • \(p\neq 2\)이고, \(x\in \mathbb{Z}_p\) 에 대하여 다음 반사공식이 성립

\[\Gamma_p(x)\Gamma_p(1-x)=(-1)^{l(x)}\] 여기서 \(x\equiv l(x) \pmod p\), \(l(x)\in \{1,2,\cdots, p\}\) \[ \begin{array}{c|cccc} x & \Gamma _3(x) & \Gamma _3(1-x) & \Gamma _3(1-x) \Gamma _3(x) & (-1)^{l(x)} \\ \hline -10 & -\frac{1}{22400} & -22400 & 1 & 1 \\ -9 & -\frac{1}{2240} & 2240 & -1 & -1 \\ -8 & \frac{1}{2240} & -2240 & -1 & -1 \\ -7 & \frac{1}{280} & 280 & 1 & 1 \\ -6 & \frac{1}{40} & -40 & -1 & -1 \\ -5 & -\frac{1}{40} & 40 & -1 & -1 \\ -4 & -\frac{1}{8} & -8 & 1 & 1 \\ -3 & -\frac{1}{2} & 2 & -1 & -1 \\ -2 & \frac{1}{2} & -2 & -1 & -1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 \\ 2 & 1 & 1 & 1 & 1 \\ 3 & -2 & \frac{1}{2} & -1 & -1 \\ 4 & 2 & -\frac{1}{2} & -1 & -1 \\ 5 & -8 & -\frac{1}{8} & 1 & 1 \\ 6 & 40 & -\frac{1}{40} & -1 & -1 \\ 7 & -40 & \frac{1}{40} & -1 & -1 \\ 8 & 280 & \frac{1}{280} & 1 & 1 \\ 9 & -2240 & \frac{1}{2240} & -1 & -1 \\ 10 & 2240 & -\frac{1}{2240} & -1 & -1 \end{array} \]


역사


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


에세이, 리뷰, 강의노트

  • Diamond, Jack. 1984. “P-Adic Gamma Functions and Their Applications.” In Number Theory, edited by David V. Chudnovsky, Gregory V. Chudnovsky, Harvey Cohn, and Melvin B. Nathanson, 168–75. Lecture Notes in Mathematics 1052. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0071542.


관련논문

  • Barman, Rupam, and Neelam Saikia. “Supercongruences for Truncated Hypergeometric Series and P-Adic Gamma Function.” arXiv:1507.07391 [math], July 27, 2015. http://arxiv.org/abs/1507.07391.
  • Fuselier, Jenny G., and Dermot McCarthy. “Hypergeometric Type Identities in the \(p\)-Adic Setting and Modular Forms.” arXiv:1407.6670 [math], July 24, 2014. http://arxiv.org/abs/1407.6670.
  • Robert, Alain M., The Gross Koblitz formula revisited, Rend. Sem. Mat. Univ. Padova 105 (2001) 157 170.
  • The p-adic gamma function and congruences of Atkin and. Swinnerton-Dyer
    • L. van Hamme, Groupe d'étude d'analyse ultramétrique, 9e année 81/82, Fasc. 3 no. J17-6p
  • Gross, Benedict H., and Neal Koblitz. 1979. “Gauss Sums and the p-Adic \(\Gamma\)-Function.” The Annals of Mathematics 109 (3): 569. doi:10.2307/1971226.
  • Diamond, Jack. 1977. “The P-Adic Log Gamma Function and P-Adic Euler Constants.” Transactions of the American Mathematical Society 233 (October): 321. doi:10.2307/1997840.
  • Morita, Yasuo, A p-adic analogue of the \(\Gamma\)-function, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.22(1975), No.2, Page 255-266

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'p'}, {'OP': '*'}, {'LOWER': 'adic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]