Sphere Packings, Lattices and Groups
둘러보기로 가기
검색하러 가기
some conventions
- \(q=e^{\pi i z}\)
chapter 2
- section 2.4 Integral lattices
chapter 7
- type I = self-dual, \(\operatorname{wt}(C)\equiv 0 \mod 2\) and there exists \(C\in \mathcal{C}\) such that \(\operatorname{wt}(C)\equiv 2 \mod 4\)
- type II = even, self-dual
type I codes
extremal even unimodular lattices
- Nebe, Gabriele, and Richard Parker. “On Extremal Even Unimodular 72-Dimensional Lattices.” Mathematics of Computation 83, no. 287 (2014): 1489–94. doi:10.1090/S0025-5718-2013-02744-5.
- Nebe, Gabriele. “On Automorphisms of Extremal Even Unimodular Lattices of Dimension 48.” arXiv:1212.0865 [math], December 4, 2012. http://arxiv.org/abs/1212.0865.
computational resource
메타데이터
위키데이터
- ID : Q55881502
Spacy 패턴 목록
- [{'LOWER': 'sphere'}, {'LOWER': 'packings'}, {'OP': '*'}, {'LOWER': 'lattices'}, {'LOWER': 'and'}, {'LEMMA': 'Groups'}]