"Talk on BGG resolution"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 166개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==characters==
 
==characters==
* let $\lambda\in \mathfrak{h}^*$
+
* let <math>\lambda\in \mathfrak{h}^*</math>
$$
+
:<math>
 
\operatorname{ch} M({\lambda})=\frac{e^{\lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})}
 
\operatorname{ch} M({\lambda})=\frac{e^{\lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})}
$$
+
</math>
* let $\lambda\in \Lambda^+$
+
* let <math>\lambda\in \Lambda^+</math>
 
;thm ([[Weyl-Kac character formula|Weyl character formula]])
 
;thm ([[Weyl-Kac character formula|Weyl character formula]])
 
:<math>
 
:<math>
10번째 줄: 10번째 줄:
 
</math>
 
</math>
 
* thus we have
 
* thus we have
$$
+
:<math>
 
\operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda)  \label{WCF}
 
\operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda)  \label{WCF}
$$
+
</math>
  
 
;prop  
 
;prop  
If $0\to M' \to M \to M'' \to 0$ is a short exact sequence in $\mathcal{O}$, we have
+
If <math>0\to M' \to M \to M'' \to 0</math> is a short exact sequence in <math>\mathcal{O}</math>, we have
$$
+
:<math>
 
\operatorname{ch}M=\operatorname{ch}M'+\operatorname{ch}M''
 
\operatorname{ch}M=\operatorname{ch}M'+\operatorname{ch}M''
$$
+
</math>
 
or  
 
or  
$$
+
:<math>
 
\operatorname{ch}M'-\operatorname{ch}M+\operatorname{ch}M''=0
 
\operatorname{ch}M'-\operatorname{ch}M+\operatorname{ch}M''=0
$$
+
</math>
 
* if we have a long exact sequence, we still get a similar alternating sum = 0  
 
* if we have a long exact sequence, we still get a similar alternating sum = 0  
 
** why? [[Euler-Poincare principle|Euler-Poincare mapping]] : a long exact sequence can be decomposed into short exact sequences.  
 
** why? [[Euler-Poincare principle|Euler-Poincare mapping]] : a long exact sequence can be decomposed into short exact sequences.  
** then the Euler characteristic of a resolution makes sense
+
** then the Euler characteristic of a finite resolution makes sense
* goal : realize the alternating sum \ref{WCF} as an Euler characteristic of a suitable resolution of $L(\lambda)$
+
* goal : realize the alternating sum \ref{WCF} as an Euler characteristic of a suitable resolution of <math>L(\lambda)</math>
* The BGG resolution resolves a finite-dimensional simple $\mathfrak{g}$-module $L(\lambda)$ by direct sums of Verma modules indexed by weights "of the same length" in the orbit $W\cdot \lambda$
+
* The BGG resolution resolves a finite-dimensional simple <math>\mathfrak{g}</math>-module <math>L(\lambda)</math> by direct sums of Verma modules indexed by weights "of the same length" in the orbit <math>W\cdot \lambda</math>
 
;thm (Bernstein-Gelfand-Gelfand Resolution)
 
;thm (Bernstein-Gelfand-Gelfand Resolution)
Fix $\lambda\in \Lambda^{+}$. There is an exact sequence of Verma modules
+
Fix <math>\lambda\in \Lambda^{+}</math>. There is an exact sequence of Verma modules
$$
+
:<math>
 
0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots \to M({\lambda})\to L({\lambda})\to 0
 
0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots \to M({\lambda})\to L({\lambda})\to 0
$$
+
</math>
where $\ell(w)$ is the length of the Weyl group element $w$, $w_0$ is the Weyl group element
+
where <math>\ell(w)</math> is the length of the Weyl group element <math>w</math>, <math>w_0</math> is the Weyl group element
of maximal length. Here $\rho$ is half the sum of the positive roots.
+
of maximal length. Here <math>\rho</math> is half the sum of the positive roots.
  
 
==example of BGG resolution==
 
==example of BGG resolution==
===$\mathfrak{sl}_2$===
+
===<math>\mathfrak{sl}_2</math>===
 
* <math>L({\lambda})</math> : irreducible highest weight module
 
* <math>L({\lambda})</math> : irreducible highest weight module
 
** weights <math>\lambda ,-2+\lambda ,\cdots, -\lambda</math>
 
** weights <math>\lambda ,-2+\lambda ,\cdots, -\lambda</math>
43번째 줄: 43번째 줄:
 
** weights <math>\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots</math>
 
** weights <math>\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots</math>
 
;thm  
 
;thm  
If $\lambda\in \Lambda^+$, the maximal submodule $N(\lambda)$ of $M(\lambda)$ is the sum of submodules $M(s_i\cdot \lambda)$ for $1\le i \le l$, where $l$ is the rank of $\mathfrak{g}$.
+
If <math>\lambda\in \Lambda^+</math>, the maximal submodule <math>N(\lambda)</math> of <math>M(\lambda)</math> is the sum of submodules <math>M(s_i\cdot \lambda)</math> for <math>1\le i \le l</math>, where <math>l</math> is the rank of <math>\mathfrak{g}</math>.
* $s_{1}(\lambda+\rho)=-\lambda-\rho$, $s_{1}\cdot \lambda=-\lambda-2\rho$
+
* <math>s_{1}(\lambda+\rho)=-\lambda-\rho</math>, <math>s_{1}\cdot \lambda=-\lambda-2\rho</math>
* if we identity $\Lambda = \mathbb{Z} \omega_1$ with $\mathbb{Z}$, then <math>\rho=1,\alpha=2</math>  
+
* if we identity <math>\Lambda = \mathbb{Z} \omega_1</math> with <math>\mathbb{Z}</math>, then <math>\rho=1,\alpha=2</math>  
 
* we have
 
* we have
$$L({\lambda})=M({\lambda})/M({-\lambda-2})$$ or
+
:<math>L({\lambda})=M({\lambda})/M({-\lambda-2})</math> or
 
:<math>0\to M({-\lambda-2})\to M({\lambda})\to L({\lambda})\to 0</math>
 
:<math>0\to M({-\lambda-2})\to M({\lambda})\to L({\lambda})\to 0</math>
 
* this gives a BGG resolution
 
* this gives a BGG resolution
* character of $L({\lambda})$ = alternating sum of characters of Verma modules
+
* character of <math>L({\lambda})</math> = alternating sum of characters of Verma modules
 
:<math>\operatorname{ch}{L({\lambda})}=\operatorname{ch}{M({\lambda})}-\operatorname{ch}{M({-\lambda-2})}=\frac{e^{\lambda}}{1-e^{-2}}-\frac{e^{-\lambda-2}}{1-e^{-2}}</math>
 
:<math>\operatorname{ch}{L({\lambda})}=\operatorname{ch}{M({\lambda})}-\operatorname{ch}{M({-\lambda-2})}=\frac{e^{\lambda}}{1-e^{-2}}-\frac{e^{-\lambda-2}}{1-e^{-2}}</math>
 
*  comparison with [[Weyl-Kac character formula]]
 
*  comparison with [[Weyl-Kac character formula]]
59번째 줄: 59번째 줄:
 
==weak BGG resolution==
 
==weak BGG resolution==
 
;def
 
;def
* We say that $M \in O$ has a standard filtration (also called a Verma flag) if there is a sequence of submodules
+
* We say that <math>M \in O</math> has a standard filtration (also called a Verma flag) if there is a sequence of submodules
$$0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M$$
+
:<math>0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M</math>
for which each $M^i := M_i/M_{i−1}\, (1 \le i \le n)$ is isomorphic to a Verma module.
+
for which each <math>M^i := M_i/M_{i−1}\, (1 \le i \le n)</math> is isomorphic to a Verma module.
 
;thm (Weak BGG resolution)
 
;thm (Weak BGG resolution)
 
There is an exact sequence
 
There is an exact sequence
$$
+
:<math>
 
0 \to M({w_0\cdot \lambda}) = D_m^{\lambda} \to D_{m-1}^{\lambda} \to \cdots \to D_1^{\lambda} \to D_0^{\lambda}=M(\lambda) \to L(\lambda) \to 0
 
0 \to M({w_0\cdot \lambda}) = D_m^{\lambda} \to D_{m-1}^{\lambda} \to \cdots \to D_1^{\lambda} \to D_0^{\lambda}=M(\lambda) \to L(\lambda) \to 0
$$
+
</math>
where $D_{k}^{\lambda}$ has a standard filtration involving exactly once each of the Verma modules $M(w\cdot \lambda)$ with $\ell(w)=k$
+
where <math>D_{k}^{\lambda}</math> has a standard filtration involving exactly once each of the Verma modules <math>M(w\cdot \lambda)</math> with <math>\ell(w)=k</math>
  
  
 
===strategy to construct a BGG resolution===
 
===strategy to construct a BGG resolution===
* construct a relative version of standard resoultion $D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})$ for $\lambda=0$
+
# construct a relative version of standard resoultion <math>D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})</math> for <math>L(0)</math>
* construct a weak BGG resolution $D_k^0:=D_k^{\chi_{0}}$ for $\lambda=0$ by cutting down to the principal block component of each term
+
# construct a weak BGG resolution <math>D_k^0:=D_k^{\chi_{0}}</math> for <math>L(0)</math> by cutting down to the principal block component of each term
* construct a weak BGG resolution $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$ for $\lambda\in \Lambda^+$ by applying the translation functor
+
# construct a weak BGG resolution <math>D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}</math> for <math>L(\lambda)</math> (we can also do this by applying the translation functor)
* show that it is actually a BGG resolution by computing $\operatorname{Ext}$ between Verma modules
+
# show that it is actually a BGG resolution by computing <math>\operatorname{Ext}</math> between Verma modules
  
 
==standard resolution of trivial module==
 
==standard resolution of trivial module==
* free $U(\mathfrak{g})$-modules $U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})$
+
* free <math>U(\mathfrak{g})</math>-modules <math>U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{k}(\mathfrak{g})</math>
 
* standard resolution of trivial module in [[Lie algebra cohomology]]
 
* standard resolution of trivial module in [[Lie algebra cohomology]]
$$\cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})\to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k-1}(\mathfrak{g})\to \cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{0}(\mathfrak{g})\to L(0)$$
+
:<math>\cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})\to U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{k-1}(\mathfrak{g})\to \cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{0}(\mathfrak{g})\to L(0)</math>
* the sequence of modules $D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})$ is a relative version of the standard resolution
+
* the sequence of modules <math>D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\wedge^{k}(\mathfrak{g}/\mathfrak{b})</math> is a relative version of the standard resolution
* we can describe $D_0$ and $D_m$ explicitly
+
* we can describe <math>D_0</math> and <math>D_m</math> explicitly
* define $\partial_k : D_k \to D_{k-1}$ as
+
* define <math>U(\mathfrak{g})</math>-module homomorphism <math>\partial_k : D_k \to D_{k-1}</math> as
$$
+
:<math>
 
\begin{align}
 
\begin{align}
\partial_k ( u\otimes \xi_1 \wedge \cdots \xi _k): &= \sum_{i=1}^k(-1)^{i+1}(uz_i\otimes \xi_1\wedge \cdots \hat{\xi_i}\wedge \cdots \xi_k)\\
+
\partial_k ( u\otimes \xi_1 \wedge \cdots \wedge \xi _k): &= \sum_{i=1}^k(-1)^{i+1}(uz_i\otimes \xi_1\wedge \cdots \wedge \hat{\xi_i}\wedge \cdots \wedge\xi_k)\\
&+\sum_{1\le i<j \le k} (-1)^{i+j}(u \otimes \overline{[z_iz_j]}\wedge \xi_1\wedge \cdots \hat{\xi_i}\wedge \cdots \hat{\xi_j} \cdots \xi_k)
+
&+\sum_{1\le i<j \le k} (-1)^{i+j}(u \otimes \overline{[z_iz_j]}\wedge \xi_1\wedge \cdots \wedge \hat{\xi_i}\wedge \cdots \wedge\hat{\xi_j} \wedge \cdots \xi_k)
 
\end{align}
 
\end{align}
$$
+
</math>
* need to show that it is actually a complex and exact  
+
where <math>z_i\in \mathfrak{g}</math> is a representative of <math>\xi_i\in \mathfrak{g}/\mathfrak{b}</math> and <math>\overline{z}</math> denotes the canonical surjection <math>z\in\mathfrak{g}</math> into <math>\mathfrak{g}/\mathfrak{b}</math>.
 +
* need to show that <math>\partial_k</math> is well-defined and it is actually a complex and exact  
 +
===exactness===
 +
* exactness is tricky
 +
** see Wallach, Real Reductive Groups I 6.A
 
** see Knapp, Lie Groups, Lie Algebras, and Cohomology IV.6
 
** see Knapp, Lie Groups, Lie Algebras, and Cohomology IV.6
 +
* Let <math>U_j(\mathfrak{g}):=U^j(\mathfrak{g})U(\mathfrak{b})</math> where <math>U^j(\mathfrak{g})</math> is the span of the PBW basis whose degree is <math>\le j</math>
 +
* note that <math>U_j(\mathfrak{g})=S_j(\mathfrak{n}^-)U(\mathfrak{b})</math> where <math>S_j(\mathfrak{n}^-)=\sum_{0\le k\le j}S^k(\mathfrak{n}^-)</math>.
 +
* <math>S^k(\mathfrak{n}^-)</math> denote the elements of <math>\operatorname{Sym}(\mathfrak{n}^-)</math> that are homogeneous of degree <math>k</math>.
 +
* <math>E_{j,k}:=U_j(\mathfrak{g})\otimes_{U(\mathfrak{b})}\wedge^{k}(\mathfrak{g}/\mathfrak{b})</math>
 +
* <math>\{E_{j,k}\}_{j\ge 0}</math> gives a filtration of <math>D_k</math>
 +
* let <math>\partial_0 : D_0\to L(0)</math> be the canonical surjection
 +
* '''exercise''' : <math>\partial_k : E_{j,k}\to E_{j+1,k-1}, k\ge 1</math>
 +
* <math>\partial_k, k\ge 1</math> induces <math>\overline{\partial_k}  : E_{j,k}/E_{j-1,k}\to E_{j+1,k-1}/E_{j,k-1}</math>
 +
 +
;prop
 +
For each <math>j\ge 1</math>, <math>\{(E_{j,k}/E_{j-1,k},\overline{\partial_k})\}_{-1\le k\le m+1}</math> is an exact sequence. (here <math>-1</math> and <math>m+1</math> terms are zero)
  
==weights of exterior powers==
 
* Q. what are the weights of $\wedge^k (\mathfrak{g}/\mathfrak{b})$ as $\mathfrak{b}$-module? A :
 
* let us find Verma modules in a standard filtration of $D_k$
 
;claim $D_k$ has a standard filtration with Verma subquotients associated to sums of$k$ distinct negative roots.
 
 
;proof
 
;proof
???
+
As a vector space, <math>E_{j,k}/E_{j-1,k}\cong S^j(\mathfrak{n}^-)\otimes \wedge^{k}(\mathfrak{n}^-)</math>.
 +
 
 +
Now we can apply basic results on the Koszul complexes :
  
;claim
+
;theorem
$D_k^0$ has a standard filtration
+
For each <math>j\geq 1</math>, the following is exact
 +
:<math>
 +
0\to S^{j-m}(V)\otimes \wedge^m(V) \to S^{j-m+1}(V)\otimes \wedge^{m-1}(V) \to \cdots \to S^{j-1}(V)\otimes \wedge^{1}(V) \to S^{j}(V)\to 0
 +
</math>
 +
where <math>S^j(V)=0</math> for <math>j<0</math>
 +
* see Lang, Algebra ' Koszul complex'
 +
 
 +
* examples
 +
:<math>
 +
0\to \wedge^2 \to S^1\otimes \wedge^1 \to S^2\to 0
 +
</math>
 +
or
 +
:<math>
 +
0\to E_{0,2} \to E_{1,1}/E_{0,1} \to E_{2,0}/E_{1,0} \to 0
 +
</math>
 +
 
 +
:<math>
 +
0\to \wedge^1 \to S^1 \to 0
 +
</math>
 +
or
 +
:<math>
 +
0\to E_{0,1} \to E_{1,0}/E_{0,0} \to 0
 +
</math>
 +
* in fact, we also have
 +
:<math>
 +
0\to E_{0,0}\to L(0)\to 0
 +
</math>
 +
;prop
 +
For each <math>j\ge 1</math>, <math>\{(E_{j,k},\partial_k)\}_{-1\le k \le m+1}</math> is exact. (here <math>-1</math> and <math>m+1</math> terms are zero)
  
 
;proof
 
;proof
Taking the principal block preserves exactness :  
+
Suppose <math>u\in E_{j,k},\, j,k\geq 1</math> satisfies <math>\partial(u)=0</math> in <math>E_{j+1,k-1}</math>.
 +
 
 +
show : there exists <math>v\in E_{j-1,k+1}</math> such that <math>\partial(v)=u</math> in
 +
:<math>
 +
E_{j-1,k+1} \to  E_{j,k}\to E_{j+1,k-1}.
 +
</math>
  
if we apply it to $0\to M' \to M \to M(\mu)\to 0$, $0\to (M')^0 \to M^0 \to (M(\mu))^0 \to 0$.
+
We look at
 +
:<math>
 +
E_{j-1,k+1}/E_{j-2,k+1} \to E_{j,k}/E_{j-1,k} \to E_{j+1,k-1}/E_{j,k}.
 +
</math>
 +
As <math>\overline{\partial}(\overline{u})=0</math>, we can find <math>v_1\in E_{j-1,k+1}</math> such that <math>\overline{\partial}(\overline{v_1})=\overline{u}</math>.  
  
the Verma quotient becomes either 0 or itself. ■
+
As <math>\overline{u}-\overline{\partial}(\overline{v_1})=0</math> in <math>E_{j,k,}/E_{j-1,k}</math>, there exists <math>w\in E_{j-1,k}</math> such that <math>u-\partial(v_1)=w</math>.
* now we want to find the relevant Verma modules
 
* let $\beta$ be a sum of $k$ distinct negative roots. Which $\beta$ is linked to $0$ or there exsits $w\in W$ such that $w\cdot 0=\beta$?
 
* first each $w$ gives $\beta_w:=w\cdot 0$ which is also a sum of elements in $w \Phi^+ \cap \Phi^-$ and it satisfies
 
$
 
\ell(w)=|w \Phi^+ \cap \Phi^-|
 
$
 
* as $|W\cdot 0|=|W|$, each $\beta_w$ is distinct
 
* thus we have found the principal block $D_k^0$ and Verma modules in its standard filtration
 
  
==tensoring with simple module==
+
Now <math>\partial(w)=0</math> in <math>E_{j,k-1}</math> and by the same argument applied to
 +
:<math>
 +
E_{j-2,k+1} \to  E_{j-1,k}\to E_{j,k-1},
 +
</math>
 +
there exists <math>v_2\in E_{j-2,k+1}</math> such that <math>w-\partial (v_2)\in E_{j-2,k}</math>, i.e. <math>u-\partial(v_1)-\partial(v_2)\ \in E_{j-2,k}</math>.
 +
 
 +
By repeating this, we can find <math>v_1,\cdots, v_j</math> such that each <math>v_i\in E_{j-i,k}</math> and <math>u-\partial(v_1)-\cdots -\partial(v_j)\ \in E_{0,k}</math>.
 +
 
 +
As <math>\overline{\partial}  : E_{0,k}\to E_{1,k-1}/E_{0,k-1}</math> is injective and <math>\partial(u-\partial(v_1)-\cdots -\partial(v_j))=0 \in E_{1,k-1}</math>, we can conclude <math>u-\partial(v_1)-\cdots -\partial(v_j)=0</math> or,
 +
:<math>
 +
u=\partial(v_1)+\cdots +\partial(v_j).
 +
</math>
 +
Thus if we set <math>v:=v_1+\cdots +v_j\in E_{j-1,k+1}</math> and <math>\partial(v)=u</math>. ■
 +
 
 +
 
 +
;thm
 +
<math>0\to D_m \to \cdots \to D_k\to \cdots \to D_1 \to D_0 \to L(0)\to 0</math> is exact.
 +
;proof
 +
The above proposition clearly proves the exactness at <math>D_k,\, k\ge 1</math>.
 +
 
 +
Assume that <math>u\in D_0</math>, hence <math>u\in E_{j,0}</math> for some <math>j</math>. Let <math>u=u_0+u_1</math> where <math>u_0</math> is the degree zero piece and <math>u_1</math> other terms in PBW basis.
 +
 
 +
If <math>\partial(u)=0</math>, then it implies <math>u_0 = 0</math> as only degree zero term survives under <math>\partial</math>.
 +
 
 +
Therefore <math>j\ge 1</math> and the above proposition still applies to conclude that there exists <math>v\in E_{j-1,1}</math> such that <math>\partial(v)=u</math>.
 +
 
 +
This proves the exactness at <math>D_0</math>. ■
 +
 
 +
==weak BGG resolution of <math>L(0)</math>==
 +
* goal : find standard filtrations of <math>D_k</math> and <math>D_k^0</math> and their Verma subquotients
 +
;lemma
 +
Let <math>N</math> be a finite-dimensional <math>U(\mathfrak{b})</math>-module having a basis of weight vectors. Then <math>M=U(\mathfrak{g})\otimes_{U(\mathfrak{b})} N</math> has a standard filtration and each weight of <math>N</math> gives a corresponding Verma subquotient.
 +
;proof
 +
Let <math>\{v_1,\cdots, v_r \}</math> be a basis of <math>N</math> consisting of weight vectors and let <math>\mu_i</math> be the weight of <math>v_i</math>.
 +
 
 +
We order the basis so that  <math>i\le j</math> whenever <math>\mu_i\le \mu_j</math>
 +
 
 +
Let <math>N_k</math> be a space spanned by <math>\{v_k,\cdots, v_r \}</math> for <math>1\le k \le r</math>. 
 +
 
 +
'''exercise'''. Check that each <math>N_k</math> is a <math>U(\mathfrak{b})</math>-submodule. (hint : weight cannot decrease under <math>U(\mathfrak{b})</math> action)
 +
 
 +
We have a flag of <math>U(\mathfrak{b})</math>-modules :
 +
:<math>
 +
0 \subset N_r \subset N_{r-1} \subset \cdots \subset N_1 = N \label{Nflag}
 +
</math>
 +
 
 +
We get a standard filtration of <math>M</math> from \ref{Nflag} as the functor <math>N\mapsto U(\mathfrak{g})\otimes_{U(\mathfrak{b})} N</math> is exact. (See Remark 1.3) ■
 +
* this lemma is true even if we drop the assumption about the existence of basis of weight vectors
 +
* but such module induces a module not necessarily on the BGG category
 +
;prop
 +
<math>D_k</math> has a standard filtration with Verma subquotients associated to sums of <math>k</math> distinct negative roots.
 +
;proof
 +
If we apply the above lemma,  enough to answer :
 +
 
 +
Q. what are the weights of <math>\wedge^k (\mathfrak{g}/\mathfrak{b})</math> as <math>\mathfrak{b}</math>-module?
 +
 
 +
A : sum of <math>k</math> distinct negative roots
 +
 +
 
 +
;prop
 +
<math>D_k^0</math> has a standard filtration with Verma subquotients <math>M(w\cdot 0), w\in W^{(k)}</math> where <math>W^{(k)}:=\{w\in W|\ell(w)=k\}</math>
 +
 
 +
;proof
 +
Taking a block preserves exactness :
 +
 
 +
If <math>0\to M' \to M \to M(\mu)\to 0</math>, then <math>0\to (M')^0 \to M^0 \to (M(\mu))^0 \to 0</math>.
 +
 
 +
:<math>
 +
(M(\mu))^0 =
 +
\begin{cases}
 +
M(\mu) , & \text{if </math>\mu<math> is linked to </math>0<math> (</math>\mu=w\cdot 0<math> for some </math>w\in W<math>)}\\
 +
0, & \text{otherwise} \\
 +
\end{cases}
 +
</math>
 +
 
 +
Thus we obtain a standard filtration of <math>D_k^0</math> from that of <math>D_k</math>.
 +
 
 +
What are the Verma subquotients or when is <math>\beta</math> linked to <math>0</math> if <math>\beta</math> is given a sum of <math>k</math> distinct negative roots?
 +
 
 +
'''fact''' : <math>\ell(w)=|w \Phi^+ \cap \Phi^-|</math>.
 +
 
 +
'''exercise''' : Let  <math>\beta_w:=w\cdot 0</math> for each <math>w\in W</math>. Then <math>\beta_w</math> is a sum of elements in <math>w \Phi^+ \cap \Phi^-</math>.
 +
 
 +
'''exercise''' : Let  <math>\Pi \subset \Phi^-</math> be given. If the sum <math>\beta</math> of elements of <math>\Pi</math> is <math>\beta_w</math> for some <math>w\in W</math>, then <math>\Pi = w \Phi^+ \cap \Phi^-</math>. (we know the whole set by only looking at the sum of them)
 +
 
 +
Thus <math>\beta</math> is a sum of <math>k</math> distinct negative roots and linked to <math>0</math> iff there exists <math>w\in W^{(k)}</math>.
 +
 
 +
Finally,
 +
 
 +
'''fact''' : <math>|W\cdot 0|=|W|</math>. (this implies each <math>\beta_w</math> is distinct)
 +
 
 +
Therefore each <math>M(w\cdot 0),\, w\in W^{(k)}</math> appears only in once our standard filtration.
 +
 
 +
 +
* thus we have found a weak BGG resolution of <math>L(0)</math>
 +
 
 +
==weak BGG resolution of <math>L(\lambda)</math>==
 
* based on Remark in 6.2
 
* based on Remark in 6.2
* study $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$
+
* let <math>\lambda\in \Lambda^+</math>
* we want to know all Verma modules involved in a standard filtration of $D_k^\lambda$
+
* goal : find a standard filtration of <math>D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}</math> and its Verma subquotients
;claim
+
;prop
$D_k^0\otimes L(\lambda)$ has a standard filtration and taking the principal block does no harm in constructing standard filtration.
+
<math>D_k^0\otimes L(\lambda)</math> has a standard filtration with Verma subquotients <math>M(w\cdot 0 + \mu)</math> where <math>w\in W^{(k)}</math> and <math>\mu</math> is a weight of <math>L(\lambda)</math>.
  
 
;proof
 
;proof
  
Use  
+
Use the following :
 
;thm (3.6)
 
;thm (3.6)
Let $M$ be a finite dimensional $U(\mathfrak{g})$-module. For any $\lambda\in \mathfrak{h}^{*}$, the tensor product $T:=M(\lambda)\otimes M$ has a finite filtration with quotients isomorphic to Verma modules of the form $M(\lambda+\mu)$. Here $\mu$ ranges over the weights of $M$, each occurring $\dim M_{\mu}$ times in the filtration.
+
Let <math>M</math> be a finite dimensional <math>U(\mathfrak{g})</math>-module. For any <math>\lambda\in \mathfrak{h}^{*}</math>, <math>T:=M(\lambda)\otimes M</math> has a standard filtration with Verma subquotients <math>M(\lambda+\mu)</math>. Here <math>\mu</math> ranges over the weights of <math>M</math>, each occurring <math>\dim M_{\mu}</math> times in the filtration.
 +
 
 +
Tensoring with a finite-dimensional representation is an exact functor in BGG category (thm 1.1).
 +
 
 +
If <math>0\to N\to M \to M(\lambda)\to 0</math>, then <math>0\to N\otimes L(\lambda)\to M\otimes L(\lambda) \to M(\lambda)\otimes L(\lambda)\to 0</math>
  
 +
Use this to construct a standard filtration on <math>D_k^0 \otimes L(\lambda)</math> from that of <math>D_k^0</math>. ■
  
;claim
+
;prop
$D_k^0\otimes L(\lambda)$ has a standard filtration.  
+
<math>D_k^\lambda</math> has a standard filtration with Verma subquotients <math>M(w\cdot \lambda),\, w\in W^{k}</math>.
  
 
;proof
 
;proof
Tensoring with a finite-dimensional representation is an exact functor in BGG category (thm 1.1).  
+
Again taking the block component for <math>\chi_{\lambda}</math> is exact and it gives a standard filtration of <math>D_k^\lambda</math> from that of <math>D_k^0\otimes L(\lambda)</math>.
 +
 
 +
We need to determine when <math>w\cdot 0 + \mu</math> is linked to <math>\lambda</math>.  
  
In other words, $0\to N\to M \to M(\lambda)\to 0$ implies $0\to N\otimes L(\lambda)\to M\otimes L(\lambda) \to M(\lambda)\otimes L(\lambda)\to 0$
+
'''exercise''' : <math>w\cdot 0 + \mu</math> is linked to <math>\lambda</math> iff <math>\mu = w\lambda</math>.
  
One can use this fact to construct a standard filtration on $D_k^0 \otimes L(\lambda)$ from a standard filtration of $D_k^0$.
+
As <math>\lambda</math> is the highest weight in <math>L(\lambda)</math>, each <math>w\lambda</math> is with weight multiplicity 1. Thus each <math>M(w\cdot \lambda),\, w\in W^{(k)}</math> appears only once in our standard filtration. Note that each <math>w\cdot \lambda</math> is distinct as :
  
* first, find all Verma modules involved in a standard filtration of $D_k^0\otimes L(\lambda)$ : those associated to $w\cdot 0 + \mu$
+
'''fact''' : <math>|W\cdot \lambda|=|W|</math> for <math>\lambda\in \Lambda^+</math>.■
* then determine which Verma modules are linked to $w\cdot \lambda$ : Ans. $\mu = w\lambda$
 
* as $\lambda$ is the highest weight in $L(\lambda)$ and thus with weight multiplicity 1, we also know that the Verma modules appear only once
 
  
 
==extensions of Verma modules==
 
==extensions of Verma modules==
* $\mu, \lambda\in \mathfrak{h}^{*}$
+
* we have constructed a weak BGG resolution of <math>L(\lambda)</math> involving <math>D_k^{\lambda}</math>
* $\mu \uparrow \lambda$ if $\mu = \lambda$ or there is a root $\alpha$ such that $\mu=s_{\alpha}\cdot \lambda < \lambda $
+
* goal : <math>D_k^{\lambda}</math> is a direct sum of Verma modules
* we say $\mu$ is strongly linked to $\lambda$ if $\mu = \lambda$ or there exist root $\alpha_1,\cdots, \alpha_r\in \Phi^+$ such that $\mu=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot \lambda \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot \lambda \uparrow ( s_{\alpha_r})\cdot \lambda \uparrow  \cdots \uparrow \lambda $
+
 
;def (Bruhat ordering)
+
;def
Define a partial order on the elements of $W$ as follows :
+
Let <math>\mu, \lambda\in \mathfrak{h}^{*}</math>. Write <math>\mu \uparrow \lambda</math> if <math>\mu = \lambda</math> or there exists <math>\alpha\in \Phi^+</math> such that <math>\mu=s_{\alpha}\cdot \lambda < \lambda </math> (<math>\mathbb{Z}^+</math>-linear combination of simple roots)
 +
 
 +
We say <math>\mu</math> is ''strongly linked'' to <math>\lambda</math> if <math>\mu = \lambda</math> or there exist <math>\alpha_1,\cdots, \alpha_r\in \Phi^+</math> such that <math>\mu=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot \lambda \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot \lambda \uparrow  \cdots \uparrow ( s_{\alpha_r})\cdot \lambda  \uparrow \lambda </math>
 +
 
 +
;def
 +
Let <math>w,w'\in W</math>. Write <math>w'\xrightarrow{t} w</math> whenever <math>w = t w' </math> for some reflection <math>t\in W</math> and <math>\ell(w') < \ell(w)</math>. Define <math>w'<w</math> if there is a sequence <math>w'=w_0\to w_1\to \cdots \to w_n=w</math>. Extend this relation to a partial ordering of <math>W</math> and call it the ''[[Bruhat ordering]]''.
 +
 
 +
example : http://groupprops.subwiki.org/wiki/File:Bruhatons3.png draw the edge of only the difference of length is 1.
  
The vertex set is the set of elements of the Coxeter group and the edge set consists of directed edges $(u, v)$ whenever $u = t v$ for some reflection $t$ and $\ell(u) < \ell(v)$.
+
'''exercise''' : Let <math>w\in W, \alpha \in \Phi^+</math> be given. The following are equivalent :
* example : http://groupprops.subwiki.org/wiki/File:Bruhatons3.png
+
 
 +
(i) There exists a <math>\lambda\in \Lambda^{+}</math> such that <math>s_{\alpha}\cdot (w\cdot \lambda) \uparrow w\cdot \lambda</math>
 +
 
 +
(ii) <math>s_{\alpha}w > w</math>
 +
 
 +
hint : use
 +
 
 +
'''fact''' : <math>w^{-1}\alpha>0</math> iff <math>\ell(s_{\alpha}w)> \ell(w)</math>.
  
 
;thm
 
;thm
Let $\lambda\in \mathfrak{h}^{*}$.
+
(a) Let <math>\lambda,\mu\in \mathfrak{h}^{*}</math>. If <math>\operatorname{Ext}_{\mathcal{O}}(M(\mu),M(\lambda))\neq 0</math>, then <math>\mu</math> is strongly linked to <math>\lambda</math> but <math>\mu \neq \lambda</math>
  
(a) If $\operatorname{Ext}_{\mathcal{O}}(M(\mu),M(\lambda))\neq 0$ for $\mu\in \mathfrak{h}^{*}$, then $\mu \uparrow \lambda$ but $\mu \neq \lambda$
+
(b) Let <math>\lambda\in \Lambda^{+}</math> and <math>w,w'\in W</math>. If <math>\operatorname{Ext}_{\mathcal{O}}(M(w'\cdot\lambda),M(w\cdot\lambda))\neq 0</math>, then <math>w<w'</math> in the [[Bruhat ordering]]. In particular, <math>\ell(w)<\ell(w')</math>.
  
(b) Let $\lambda\in \Lambda^{+}$ and $w,w'\in W$. If $\operatorname{Ext}_{\mathcal{O}}(M(w'\cdot\lambda),M(w\cdot\lambda))\neq 0$, then $w<w'$ in the [[Bruhat ordering]]. In particular, $\ell(w)<\ell(w')$.
+
;proof of (a)
* Now use induction on the length of standard filtration
+
(a) uses projective cover, BGG reciprocity and BGG theorem from the previous chapters. (so we skip the proof) ■
* if we have $0\to \oplus M_{w\cdot \lambda}\to D_k^{\lambda} \to M(w'\cdot \lambda) \to 0$, then as $\operatorname{Ext}\left(M(w'\cdot \lambda ),\oplus M(w\cdot \lambda)\right)$ is zero since it is additive. Then we obtain a split extension.
+
 
 +
;proof of (b)
 +
From (a), we see that <math>w'\cdot\lambda</math> is strongly linked to <math>w\cdot\lambda</math>. Thus we can find
 +
<math>
 +
w'\cdot\lambda=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow \cdots  \uparrow ( s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow (w\cdot\lambda)
 +
</math>
 +
From exercise, <math>w'=s_{\alpha_1}\cdots s_{\alpha_r}w> \cdots > s_{\alpha_r}w > w</math>.
 +
 +
 
 +
==finish==
 +
;prop
 +
A weak BGG resolution is a BGG resolution.
 +
;proof
 +
 
 +
Use induction on the length of standard filtration.
 +
 
 +
Let <math>M\subset D_k^{\lambda}</math> and <math>D_k^{\lambda}/M \cong M(w'\cdot \lambda)</math> for some <math>w'\in W^{(k)}</math>.
 +
 
 +
By induction hypothesis, <math>0\to M=\oplus_{w\in W^{(k)},w\neq w'} M(w\cdot \lambda)\to D_k^{\lambda} \to M(w'\cdot \lambda) \to 0</math>, then this splits as <math>\operatorname{Ext}\left(M(w'\cdot \lambda ),\oplus M(w\cdot \lambda)\right)</math> is zero (ext is additive).
 +
 
 +
  
 
==memo==
 
==memo==
 
* proof of Thm 3.6 uses the following (we don't need this for our goal)
 
* proof of Thm 3.6 uses the following (we don't need this for our goal)
 
;thm Tensor Identity (56p)
 
;thm Tensor Identity (56p)
Let $M$ be a $U(\mathfrak{g})$-module and $L$ a $U(\mathfrak{b})$-module. Then
+
Let <math>M</math> be a <math>U(\mathfrak{g})</math>-module and <math>L</math> a <math>U(\mathfrak{b})</math>-module. Then
$$
+
:<math>
 
(U(\mathfrak{g})\otimes_{U(\mathfrak{b})}L)\otimes M \cong U(\mathfrak{g})\otimes_{U(\mathfrak{b})}(L \otimes M)
 
(U(\mathfrak{g})\otimes_{U(\mathfrak{b})}L)\otimes M \cong U(\mathfrak{g})\otimes_{U(\mathfrak{b})}(L \otimes M)
$$
+
</math>
  
  
 
;prop (3.7)
 
;prop (3.7)
Let $M\in \mathcal{O}$ have a standard filtration. If $\lambda$ is maximal among the weights of $M$, then $M$ has a submodule isomorphic to $M(\lambda)$ and $M/M(\lambda)$ has a standard filtration.
+
Let <math>M\in \mathcal{O}</math> have a standard filtration. If <math>\lambda</math> is maximal among the weights of <math>M</math>, then <math>M</math> has a submodule isomorphic to <math>M(\lambda)</math> and <math>M/M(\lambda)</math> has a standard filtration.
  
  
 
===overview===
 
===overview===
 
* principal block : filtering through central characters
 
* principal block : filtering through central characters
** is a block a $U(\mathfrak{g})$-submodule? yes
+
** is a block a <math>U(\mathfrak{g})</math>-submodule? yes
 
** how to check that it preserves the exactness : any homomorphism between modules belonging to different blocks will be zero
 
** how to check that it preserves the exactness : any homomorphism between modules belonging to different blocks will be zero
** how to describe $\chi_{\lambda}$? use the twisted Harish-Chandra homomorphism $\psi : Z(\mathfrak{g})\to S(\mathfrak{h})$. we have
+
** how to describe <math>\chi_{\lambda}</math>? use the twisted Harish-Chandra homomorphism <math>\psi : Z(\mathfrak{g})\to S(\mathfrak{h})</math>. we have
$$
+
:<math>
 
\chi_{\lambda}(z)=(\lambda+\rho)(\psi(z)),\quad z\in Z(\mathfrak{g})
 
\chi_{\lambda}(z)=(\lambda+\rho)(\psi(z)),\quad z\in Z(\mathfrak{g})
$$
+
</math>
** see 26p for an example of $\chi_{\lambda}$ in type $A_1$
+
** see 26p for an example of <math>\chi_{\lambda}</math> in type <math>A_1</math>
 
* combinatorial results
 
* combinatorial results
** longest elements satisfies $w_0\cdot 0 = -2\rho$ (related to diagram automorphism)
+
** longest elements satisfies <math>w_0\cdot 0 = -2\rho</math> (related to diagram automorphism)
** consider the set of sum of k distinct roots. Which elements are linked to $0$?
+
** consider the set of sum of k distinct roots. Which elements are linked to <math>0</math>?
 
** Bruhat ordering
 
** Bruhat ordering
 
* Bruhat ordering and strong linkage relation
 
* Bruhat ordering and strong linkage relation
** let $\lambda \in \Lambda^+$ (which is regular for the dot-action of $W$)
+
** let <math>\lambda \in \Lambda^+</math> (which is regular for the dot-action of <math>W</math>)
**  $w'\cdot \lambda< w \cdot \lambda $ translates into $w < w'$ in the Bruhat ordering
+
**  <math>w'\cdot \lambda< w \cdot \lambda </math> translates into <math>w < w'</math> in the Bruhat ordering
 
* strong linkage relation and extension of Verma modules
 
* strong linkage relation and extension of Verma modules
 
* for exterior powers, see [[Lie Algebras of Finite and Affine Type by Carter]]
 
* for exterior powers, see [[Lie Algebras of Finite and Affine Type by Carter]]
200번째 줄: 377번째 줄:
 
[[분류:Talks and lecture notes]]
 
[[분류:Talks and lecture notes]]
 
[[분류:abstract concepts]]
 
[[분류:abstract concepts]]
 +
[[분류:migrate]]

2020년 11월 14일 (토) 02:14 기준 최신판

characters

  • let \(\lambda\in \mathfrak{h}^*\)

\[ \operatorname{ch} M({\lambda})=\frac{e^{\lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})} \]

  • let \(\lambda\in \Lambda^+\)
thm (Weyl character formula)

\[ \operatorname{ch}L({\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})} \]

  • thus we have

\[ \operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda) \label{WCF} \]

prop

If \(0\to M' \to M \to M'' \to 0\) is a short exact sequence in \(\mathcal{O}\), we have \[ \operatorname{ch}M=\operatorname{ch}M'+\operatorname{ch}M'' \] or \[ \operatorname{ch}M'-\operatorname{ch}M+\operatorname{ch}M''=0 \]

  • if we have a long exact sequence, we still get a similar alternating sum = 0
    • why? Euler-Poincare mapping : a long exact sequence can be decomposed into short exact sequences.
    • then the Euler characteristic of a finite resolution makes sense
  • goal : realize the alternating sum \ref{WCF} as an Euler characteristic of a suitable resolution of \(L(\lambda)\)
  • The BGG resolution resolves a finite-dimensional simple \(\mathfrak{g}\)-module \(L(\lambda)\) by direct sums of Verma modules indexed by weights "of the same length" in the orbit \(W\cdot \lambda\)
thm (Bernstein-Gelfand-Gelfand Resolution)

Fix \(\lambda\in \Lambda^{+}\). There is an exact sequence of Verma modules \[ 0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots \to M({\lambda})\to L({\lambda})\to 0 \] where \(\ell(w)\) is the length of the Weyl group element \(w\), \(w_0\) is the Weyl group element of maximal length. Here \(\rho\) is half the sum of the positive roots.

example of BGG resolution

\(\mathfrak{sl}_2\)

  • \(L({\lambda})\) : irreducible highest weight module
    • weights \(\lambda ,-2+\lambda ,\cdots, -\lambda\)
  • \(M({\lambda})\) : Verma modules
    • weights \(\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots\)
thm

If \(\lambda\in \Lambda^+\), the maximal submodule \(N(\lambda)\) of \(M(\lambda)\) is the sum of submodules \(M(s_i\cdot \lambda)\) for \(1\le i \le l\), where \(l\) is the rank of \(\mathfrak{g}\).

  • \(s_{1}(\lambda+\rho)=-\lambda-\rho\), \(s_{1}\cdot \lambda=-\lambda-2\rho\)
  • if we identity \(\Lambda = \mathbb{Z} \omega_1\) with \(\mathbb{Z}\), then \(\rho=1,\alpha=2\)
  • we have

\[L({\lambda})=M({\lambda})/M({-\lambda-2})\] or \[0\to M({-\lambda-2})\to M({\lambda})\to L({\lambda})\to 0\]

  • this gives a BGG resolution
  • character of \(L({\lambda})\) = alternating sum of characters of Verma modules

\[\operatorname{ch}{L({\lambda})}=\operatorname{ch}{M({\lambda})}-\operatorname{ch}{M({-\lambda-2})}=\frac{e^{\lambda}}{1-e^{-2}}-\frac{e^{-\lambda-2}}{1-e^{-2}}\]

\[\operatorname{ch} L({\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)}}{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{e^{\lambda+1}-e^{-\lambda-1}}{e^{1}(1-e^{-2})}\]

  • In general, there are more terms involved in a BGG resolution and choosing right homomorphisms is not easy
  • we take a detour

weak BGG resolution

def
  • We say that \(M \in O\) has a standard filtration (also called a Verma flag) if there is a sequence of submodules

\[0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M\] for which each \(M^i := M_i/M_{i−1}\, (1 \le i \le n)\) is isomorphic to a Verma module.

thm (Weak BGG resolution)

There is an exact sequence \[ 0 \to M({w_0\cdot \lambda}) = D_m^{\lambda} \to D_{m-1}^{\lambda} \to \cdots \to D_1^{\lambda} \to D_0^{\lambda}=M(\lambda) \to L(\lambda) \to 0 \] where \(D_{k}^{\lambda}\) has a standard filtration involving exactly once each of the Verma modules \(M(w\cdot \lambda)\) with \(\ell(w)=k\)


strategy to construct a BGG resolution

  1. construct a relative version of standard resoultion \(D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})\) for \(L(0)\)
  2. construct a weak BGG resolution \(D_k^0:=D_k^{\chi_{0}}\) for \(L(0)\) by cutting down to the principal block component of each term
  3. construct a weak BGG resolution \(D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}\) for \(L(\lambda)\) (we can also do this by applying the translation functor)
  4. show that it is actually a BGG resolution by computing \(\operatorname{Ext}\) between Verma modules

standard resolution of trivial module

  • free \(U(\mathfrak{g})\)-modules \(U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{k}(\mathfrak{g})\)
  • standard resolution of trivial module in Lie algebra cohomology

\[\cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})\to U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{k-1}(\mathfrak{g})\to \cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\wedge^{0}(\mathfrak{g})\to L(0)\]

  • the sequence of modules \(D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\wedge^{k}(\mathfrak{g}/\mathfrak{b})\) is a relative version of the standard resolution
  • we can describe \(D_0\) and \(D_m\) explicitly
  • define \(U(\mathfrak{g})\)-module homomorphism \(\partial_k : D_k \to D_{k-1}\) as

\[ \begin{align} \partial_k ( u\otimes \xi_1 \wedge \cdots \wedge \xi _k): &= \sum_{i=1}^k(-1)^{i+1}(uz_i\otimes \xi_1\wedge \cdots \wedge \hat{\xi_i}\wedge \cdots \wedge\xi_k)\\ &+\sum_{1\le i<j \le k} (-1)^{i+j}(u \otimes \overline{[z_iz_j]}\wedge \xi_1\wedge \cdots \wedge \hat{\xi_i}\wedge \cdots \wedge\hat{\xi_j} \wedge \cdots \xi_k) \end{align} \] where \(z_i\in \mathfrak{g}\) is a representative of \(\xi_i\in \mathfrak{g}/\mathfrak{b}\) and \(\overline{z}\) denotes the canonical surjection \(z\in\mathfrak{g}\) into \(\mathfrak{g}/\mathfrak{b}\).

  • need to show that \(\partial_k\) is well-defined and it is actually a complex and exact

exactness

  • exactness is tricky
    • see Wallach, Real Reductive Groups I 6.A
    • see Knapp, Lie Groups, Lie Algebras, and Cohomology IV.6
  • Let \(U_j(\mathfrak{g}):=U^j(\mathfrak{g})U(\mathfrak{b})\) where \(U^j(\mathfrak{g})\) is the span of the PBW basis whose degree is \(\le j\)
  • note that \(U_j(\mathfrak{g})=S_j(\mathfrak{n}^-)U(\mathfrak{b})\) where \(S_j(\mathfrak{n}^-)=\sum_{0\le k\le j}S^k(\mathfrak{n}^-)\).
  • \(S^k(\mathfrak{n}^-)\) denote the elements of \(\operatorname{Sym}(\mathfrak{n}^-)\) that are homogeneous of degree \(k\).
  • \(E_{j,k}:=U_j(\mathfrak{g})\otimes_{U(\mathfrak{b})}\wedge^{k}(\mathfrak{g}/\mathfrak{b})\)
  • \(\{E_{j,k}\}_{j\ge 0}\) gives a filtration of \(D_k\)
  • let \(\partial_0 : D_0\to L(0)\) be the canonical surjection
  • exercise \[\partial_k : E_{j,k}\to E_{j+1,k-1}, k\ge 1\]
  • \(\partial_k, k\ge 1\) induces \(\overline{\partial_k} : E_{j,k}/E_{j-1,k}\to E_{j+1,k-1}/E_{j,k-1}\)
prop

For each \(j\ge 1\), \(\{(E_{j,k}/E_{j-1,k},\overline{\partial_k})\}_{-1\le k\le m+1}\) is an exact sequence. (here \(-1\) and \(m+1\) terms are zero)

proof

As a vector space, \(E_{j,k}/E_{j-1,k}\cong S^j(\mathfrak{n}^-)\otimes \wedge^{k}(\mathfrak{n}^-)\).

Now we can apply basic results on the Koszul complexes :

theorem

For each \(j\geq 1\), the following is exact \[ 0\to S^{j-m}(V)\otimes \wedge^m(V) \to S^{j-m+1}(V)\otimes \wedge^{m-1}(V) \to \cdots \to S^{j-1}(V)\otimes \wedge^{1}(V) \to S^{j}(V)\to 0 \] where \(S^j(V)=0\) for \(j<0\)

  • see Lang, Algebra ' Koszul complex'
  • examples

\[ 0\to \wedge^2 \to S^1\otimes \wedge^1 \to S^2\to 0 \] or \[ 0\to E_{0,2} \to E_{1,1}/E_{0,1} \to E_{2,0}/E_{1,0} \to 0 \]

\[ 0\to \wedge^1 \to S^1 \to 0 \] or \[ 0\to E_{0,1} \to E_{1,0}/E_{0,0} \to 0 \]

  • in fact, we also have

\[ 0\to E_{0,0}\to L(0)\to 0 \]

prop

For each \(j\ge 1\), \(\{(E_{j,k},\partial_k)\}_{-1\le k \le m+1}\) is exact. (here \(-1\) and \(m+1\) terms are zero)

proof

Suppose \(u\in E_{j,k},\, j,k\geq 1\) satisfies \(\partial(u)=0\) in \(E_{j+1,k-1}\).

show : there exists \(v\in E_{j-1,k+1}\) such that \(\partial(v)=u\) in \[ E_{j-1,k+1} \to E_{j,k}\to E_{j+1,k-1}. \]

We look at \[ E_{j-1,k+1}/E_{j-2,k+1} \to E_{j,k}/E_{j-1,k} \to E_{j+1,k-1}/E_{j,k}. \] As \(\overline{\partial}(\overline{u})=0\), we can find \(v_1\in E_{j-1,k+1}\) such that \(\overline{\partial}(\overline{v_1})=\overline{u}\).

As \(\overline{u}-\overline{\partial}(\overline{v_1})=0\) in \(E_{j,k,}/E_{j-1,k}\), there exists \(w\in E_{j-1,k}\) such that \(u-\partial(v_1)=w\).

Now \(\partial(w)=0\) in \(E_{j,k-1}\) and by the same argument applied to \[ E_{j-2,k+1} \to E_{j-1,k}\to E_{j,k-1}, \] there exists \(v_2\in E_{j-2,k+1}\) such that \(w-\partial (v_2)\in E_{j-2,k}\), i.e. \(u-\partial(v_1)-\partial(v_2)\ \in E_{j-2,k}\).

By repeating this, we can find \(v_1,\cdots, v_j\) such that each \(v_i\in E_{j-i,k}\) and \(u-\partial(v_1)-\cdots -\partial(v_j)\ \in E_{0,k}\).

As \(\overline{\partial} : E_{0,k}\to E_{1,k-1}/E_{0,k-1}\) is injective and \(\partial(u-\partial(v_1)-\cdots -\partial(v_j))=0 \in E_{1,k-1}\), we can conclude \(u-\partial(v_1)-\cdots -\partial(v_j)=0\) or, \[ u=\partial(v_1)+\cdots +\partial(v_j). \] Thus if we set \(v:=v_1+\cdots +v_j\in E_{j-1,k+1}\) and \(\partial(v)=u\). ■


thm

\(0\to D_m \to \cdots \to D_k\to \cdots \to D_1 \to D_0 \to L(0)\to 0\) is exact.

proof

The above proposition clearly proves the exactness at \(D_k,\, k\ge 1\).

Assume that \(u\in D_0\), hence \(u\in E_{j,0}\) for some \(j\). Let \(u=u_0+u_1\) where \(u_0\) is the degree zero piece and \(u_1\) other terms in PBW basis.

If \(\partial(u)=0\), then it implies \(u_0 = 0\) as only degree zero term survives under \(\partial\).

Therefore \(j\ge 1\) and the above proposition still applies to conclude that there exists \(v\in E_{j-1,1}\) such that \(\partial(v)=u\).

This proves the exactness at \(D_0\). ■

weak BGG resolution of \(L(0)\)

  • goal : find standard filtrations of \(D_k\) and \(D_k^0\) and their Verma subquotients
lemma

Let \(N\) be a finite-dimensional \(U(\mathfrak{b})\)-module having a basis of weight vectors. Then \(M=U(\mathfrak{g})\otimes_{U(\mathfrak{b})} N\) has a standard filtration and each weight of \(N\) gives a corresponding Verma subquotient.

proof

Let \(\{v_1,\cdots, v_r \}\) be a basis of \(N\) consisting of weight vectors and let \(\mu_i\) be the weight of \(v_i\).

We order the basis so that \(i\le j\) whenever \(\mu_i\le \mu_j\)

Let \(N_k\) be a space spanned by \(\{v_k,\cdots, v_r \}\) for \(1\le k \le r\).

exercise. Check that each \(N_k\) is a \(U(\mathfrak{b})\)-submodule. (hint : weight cannot decrease under \(U(\mathfrak{b})\) action)

We have a flag of \(U(\mathfrak{b})\)-modules : \[ 0 \subset N_r \subset N_{r-1} \subset \cdots \subset N_1 = N \label{Nflag} \]

We get a standard filtration of \(M\) from \ref{Nflag} as the functor \(N\mapsto U(\mathfrak{g})\otimes_{U(\mathfrak{b})} N\) is exact. (See Remark 1.3) ■

  • this lemma is true even if we drop the assumption about the existence of basis of weight vectors
  • but such module induces a module not necessarily on the BGG category
prop

\(D_k\) has a standard filtration with Verma subquotients associated to sums of \(k\) distinct negative roots.

proof

If we apply the above lemma, enough to answer :

Q. what are the weights of \(\wedge^k (\mathfrak{g}/\mathfrak{b})\) as \(\mathfrak{b}\)-module?

A : sum of \(k\) distinct negative roots ■

prop

\(D_k^0\) has a standard filtration with Verma subquotients \(M(w\cdot 0), w\in W^{(k)}\) where \(W^{(k)}:=\{w\in W|\ell(w)=k\}\)

proof

Taking a block preserves exactness :

If \(0\to M' \to M \to M(\mu)\to 0\), then \(0\to (M')^0 \to M^0 \to (M(\mu))^0 \to 0\).

\[ (M(\mu))^0 = \begin{cases} M(\mu) , & \text{if \]\mu\( is linked to \)0\( (\)\mu=w\cdot 0\( for some \)w\in W\()}\\ 0, & \text{otherwise} \\ \end{cases} \)

Thus we obtain a standard filtration of \(D_k^0\) from that of \(D_k\).

What are the Verma subquotients or when is \(\beta\) linked to \(0\) if \(\beta\) is given a sum of \(k\) distinct negative roots?

fact \[\ell(w)=|w \Phi^+ \cap \Phi^-|\].

exercise : Let \(\beta_w:=w\cdot 0\) for each \(w\in W\). Then \(\beta_w\) is a sum of elements in \(w \Phi^+ \cap \Phi^-\).

exercise : Let \(\Pi \subset \Phi^-\) be given. If the sum \(\beta\) of elements of \(\Pi\) is \(\beta_w\) for some \(w\in W\), then \(\Pi = w \Phi^+ \cap \Phi^-\). (we know the whole set by only looking at the sum of them)

Thus \(\beta\) is a sum of \(k\) distinct negative roots and linked to \(0\) iff there exists \(w\in W^{(k)}\).

Finally,

fact \[|W\cdot 0|=|W|\]. (this implies each \(\beta_w\) is distinct)

Therefore each \(M(w\cdot 0),\, w\in W^{(k)}\) appears only in once our standard filtration.

  • thus we have found a weak BGG resolution of \(L(0)\)

weak BGG resolution of \(L(\lambda)\)

  • based on Remark in 6.2
  • let \(\lambda\in \Lambda^+\)
  • goal : find a standard filtration of \(D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}\) and its Verma subquotients
prop

\(D_k^0\otimes L(\lambda)\) has a standard filtration with Verma subquotients \(M(w\cdot 0 + \mu)\) where \(w\in W^{(k)}\) and \(\mu\) is a weight of \(L(\lambda)\).

proof

Use the following :

thm (3.6)

Let \(M\) be a finite dimensional \(U(\mathfrak{g})\)-module. For any \(\lambda\in \mathfrak{h}^{*}\), \(T:=M(\lambda)\otimes M\) has a standard filtration with Verma subquotients \(M(\lambda+\mu)\). Here \(\mu\) ranges over the weights of \(M\), each occurring \(\dim M_{\mu}\) times in the filtration.

Tensoring with a finite-dimensional representation is an exact functor in BGG category (thm 1.1).

If \(0\to N\to M \to M(\lambda)\to 0\), then \(0\to N\otimes L(\lambda)\to M\otimes L(\lambda) \to M(\lambda)\otimes L(\lambda)\to 0\)

Use this to construct a standard filtration on \(D_k^0 \otimes L(\lambda)\) from that of \(D_k^0\). ■

prop

\(D_k^\lambda\) has a standard filtration with Verma subquotients \(M(w\cdot \lambda),\, w\in W^{k}\).

proof

Again taking the block component for \(\chi_{\lambda}\) is exact and it gives a standard filtration of \(D_k^\lambda\) from that of \(D_k^0\otimes L(\lambda)\).

We need to determine when \(w\cdot 0 + \mu\) is linked to \(\lambda\).

exercise \[w\cdot 0 + \mu\] is linked to \(\lambda\) iff \(\mu = w\lambda\).

As \(\lambda\) is the highest weight in \(L(\lambda)\), each \(w\lambda\) is with weight multiplicity 1. Thus each \(M(w\cdot \lambda),\, w\in W^{(k)}\) appears only once in our standard filtration. Note that each \(w\cdot \lambda\) is distinct as :

fact \[|W\cdot \lambda|=|W|\] for \(\lambda\in \Lambda^+\).■

extensions of Verma modules

  • we have constructed a weak BGG resolution of \(L(\lambda)\) involving \(D_k^{\lambda}\)
  • goal \[D_k^{\lambda}\] is a direct sum of Verma modules
def

Let \(\mu, \lambda\in \mathfrak{h}^{*}\). Write \(\mu \uparrow \lambda\) if \(\mu = \lambda\) or there exists \(\alpha\in \Phi^+\) such that \(\mu=s_{\alpha}\cdot \lambda < \lambda \) (\(\mathbb{Z}^+\)-linear combination of simple roots)

We say \(\mu\) is strongly linked to \(\lambda\) if \(\mu = \lambda\) or there exist \(\alpha_1,\cdots, \alpha_r\in \Phi^+\) such that \(\mu=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot \lambda \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot \lambda \uparrow \cdots \uparrow ( s_{\alpha_r})\cdot \lambda \uparrow \lambda \)

def

Let \(w,w'\in W\). Write \(w'\xrightarrow{t} w\) whenever \(w = t w' \) for some reflection \(t\in W\) and \(\ell(w') < \ell(w)\). Define \(w'<w\) if there is a sequence \(w'=w_0\to w_1\to \cdots \to w_n=w\). Extend this relation to a partial ordering of \(W\) and call it the Bruhat ordering.

example : http://groupprops.subwiki.org/wiki/File:Bruhatons3.png draw the edge of only the difference of length is 1.

exercise : Let \(w\in W, \alpha \in \Phi^+\) be given. The following are equivalent :

(i) There exists a \(\lambda\in \Lambda^{+}\) such that \(s_{\alpha}\cdot (w\cdot \lambda) \uparrow w\cdot \lambda\)

(ii) \(s_{\alpha}w > w\)

hint : use

fact \[w^{-1}\alpha>0\] iff \(\ell(s_{\alpha}w)> \ell(w)\).

thm

(a) Let \(\lambda,\mu\in \mathfrak{h}^{*}\). If \(\operatorname{Ext}_{\mathcal{O}}(M(\mu),M(\lambda))\neq 0\), then \(\mu\) is strongly linked to \(\lambda\) but \(\mu \neq \lambda\)

(b) Let \(\lambda\in \Lambda^{+}\) and \(w,w'\in W\). If \(\operatorname{Ext}_{\mathcal{O}}(M(w'\cdot\lambda),M(w\cdot\lambda))\neq 0\), then \(w<w'\) in the Bruhat ordering. In particular, \(\ell(w)<\ell(w')\).

proof of (a)

(a) uses projective cover, BGG reciprocity and BGG theorem from the previous chapters. (so we skip the proof) ■

proof of (b)

From (a), we see that \(w'\cdot\lambda\) is strongly linked to \(w\cdot\lambda\). Thus we can find \( w'\cdot\lambda=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow \cdots \uparrow ( s_{\alpha_r})\cdot (w\cdot\lambda) \uparrow (w\cdot\lambda) \) From exercise, \(w'=s_{\alpha_1}\cdots s_{\alpha_r}w> \cdots > s_{\alpha_r}w > w\). ■

finish

prop

A weak BGG resolution is a BGG resolution.

proof

Use induction on the length of standard filtration.

Let \(M\subset D_k^{\lambda}\) and \(D_k^{\lambda}/M \cong M(w'\cdot \lambda)\) for some \(w'\in W^{(k)}\).

By induction hypothesis, \(0\to M=\oplus_{w\in W^{(k)},w\neq w'} M(w\cdot \lambda)\to D_k^{\lambda} \to M(w'\cdot \lambda) \to 0\), then this splits as \(\operatorname{Ext}\left(M(w'\cdot \lambda ),\oplus M(w\cdot \lambda)\right)\) is zero (ext is additive).

memo

  • proof of Thm 3.6 uses the following (we don't need this for our goal)
thm Tensor Identity (56p)

Let \(M\) be a \(U(\mathfrak{g})\)-module and \(L\) a \(U(\mathfrak{b})\)-module. Then \[ (U(\mathfrak{g})\otimes_{U(\mathfrak{b})}L)\otimes M \cong U(\mathfrak{g})\otimes_{U(\mathfrak{b})}(L \otimes M) \]


prop (3.7)

Let \(M\in \mathcal{O}\) have a standard filtration. If \(\lambda\) is maximal among the weights of \(M\), then \(M\) has a submodule isomorphic to \(M(\lambda)\) and \(M/M(\lambda)\) has a standard filtration.


overview

  • principal block : filtering through central characters
    • is a block a \(U(\mathfrak{g})\)-submodule? yes
    • how to check that it preserves the exactness : any homomorphism between modules belonging to different blocks will be zero
    • how to describe \(\chi_{\lambda}\)? use the twisted Harish-Chandra homomorphism \(\psi : Z(\mathfrak{g})\to S(\mathfrak{h})\). we have

\[ \chi_{\lambda}(z)=(\lambda+\rho)(\psi(z)),\quad z\in Z(\mathfrak{g}) \]

    • see 26p for an example of \(\chi_{\lambda}\) in type \(A_1\)
  • combinatorial results
    • longest elements satisfies \(w_0\cdot 0 = -2\rho\) (related to diagram automorphism)
    • consider the set of sum of k distinct roots. Which elements are linked to \(0\)?
    • Bruhat ordering
  • Bruhat ordering and strong linkage relation
    • let \(\lambda \in \Lambda^+\) (which is regular for the dot-action of \(W\))
    • \(w'\cdot \lambda< w \cdot \lambda \) translates into \(w < w'\) in the Bruhat ordering
  • strong linkage relation and extension of Verma modules
  • for exterior powers, see Lie Algebras of Finite and Affine Type by Carter