"Talk on Chevalley's integral forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
112번째 줄: 112번째 줄:
 
* for $Q=(q_1,\cdots, q_N)$ with $q_i$ non-negative integers, put
 
* for $Q=(q_1,\cdots, q_N)$ with $q_i$ non-negative integers, put
 
$$
 
$$
e_{\pm Q}=\prod_{i=1}^N (X_{\pm \alpha_i}^{q_i}{(q_i)!}
+
e_{Q}=\prod_{i=1}^N (X_{\alpha_i}^{q_i}{(q_i)!}
 +
$$
 +
and
 +
$$
 +
f_{Q}=\prod_{i=1}^N (X_{-\alpha_i}^{q_i}{(q_i)!}
 
$$
 
$$
 
* for $x\in \mathfrak{g}$ and $s\in \mathbb{Z}_{\geq 0}$, put
 
* for $x\in \mathfrak{g}$ and $s\in \mathbb{Z}_{\geq 0}$, put
125번째 줄: 129번째 줄:
 
The elements
 
The elements
 
$$
 
$$
\{e_{-Q}h_Pe_{S}\}
+
\{f_{Q}h_Pe_{S}\}
 
$$ for all $Q,P,S$ form an integral basis for $U_{\mathbb{Z}}$.
 
$$ for all $Q,P,S$ form an integral basis for $U_{\mathbb{Z}}$.
  

2014년 4월 1일 (화) 00:23 판

introduction

motivating questions

  • why do we want integral forms of an algebra?
  • what are good bases?
  • how can we check the consistency of Chevalley basis?


integral forms

  • $A$ algebra over $\mathbb{C}$ (for any field $F$ of characteristic 0)
def

An integral form $A_\mathbb{Z}$ of $A$ to be a $\mathbb{Z}$-algebra such that $A_\mathbb{Z}\otimes_\mathbb{Z}\mathbb{F}=A$.

An integral basis for $A$ is a $\mathbb{Z}$-basis for $A_\mathbb{Z}$.

  • Chevalley 1955, integral forms for finite-dimensional simple Lie algebras
    • His work led to the construction of Chevalley groups
  • Kostant 1966, integral forms for the UEAs of simple Lie algebras
    • Kostant found that the good integral forms are the ones with a structural base and showed that the universal enveloping algebras of finite dimensional semisimple Lie algebras have a structural base (according to The fake monster formal group by Borcherds)


review of basics on $\mathfrak{sl}_2$

Lie algebra \(\mathfrak{sl}(2)\)

  • \(\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle\)
  • commutator

\[ [E,F]=H \\ [H,E]=2E \\ [H,F]=-2F \]

  • \(\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle\) is an integral form (so $\mathfrak{g}_{\mathbb{Z}}$ is a Lie algebra over $\mathbb{Z}$)

UEA

  • universal enveloping algebra의 PBW 기저 \(\{F^kH^lE^m|k,l,m\geq 0\}\)
  • what's $U(\mathfrak{g})_{\mathbb{Z}}$?


finite dimensional representations

  • \(V\) :유한차원인 기약표현
  • \(V=\oplus_{\lambda\in\mathbb{C}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)
  • \(\lambda\in \mathbb{C}\) 에 대하여, 다음의 조건을 만족하는 highest weight vector \(v_0\) 를 정의

\[Ev_0=0\] \[Hv_0=\lambda v_0\]

  • \(v_j:=\frac{F^j}{j!}v_0\) 로 정의하면, 다음 관계가 만족된다

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j+1)v_{j+1}\] \[E v_j=(\lambda -j+1)v_{j-1}\]

  • to get a finite dimensional $\mathfrak{g}$-module $V$ spanned by \(\{v_j|j\geq 0\}\), we need \(\lambda\in\mathbb{Z}, \lambda\geq 0\)
Question.

where do $\frac{F^j}{j!}$ come from?


base of $\mathfrak{g}$ and structure constants

basis

  • on $\mathfrak{g}$, we have a non-deg bilinear form $(\cdot,\cdot)$.
  • fix $\mathfrak{h}$
  • $\Delta$ : root system
  • $\Pi$ : simple system (base of $\Delta$)
  • Cartan decomposition

$$ \mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right) $$

  • fix $H_{\alpha}$ uniquely for each $\alpha\in \Delta$ by

$$ \beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*} $$

  • we can choose $x_{\alpha}\in \mathfrak{g}_{\alpha}$ so that

$$[x_{\alpha},x_{-\alpha}]=h_{\alpha}$$

  • structure constants $n_{\alpha,\beta}$

$$[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}$$

  • $n_{\alpha,\beta}\neq 0$ only if $\alpha+\beta\in \Delta$
  • $n_{\alpha,\beta}$ is not fixed by the above condition

structure constants

Lemma 7.3

The structure constants $n_{\alpha,\beta}$ for extraspecial pairs $(\alpha,\beta)$ can be chosen as arbitrary non-zero elements of $\mathbb{C}$ , by appropriate choice of the elements $e_{\alpha}$.


Proposition 7.4

All the structure constants $n_{\alpha,\beta}$ are determined by the structure constants for extraspecial pairs.


Chevalley

  • a synthesis between the theory of Lie groups and the theory of finite groups


observation

  • if we make another choice $x_{\alpha}'=u_{\alpha}x_{\alpha}$ with $u_{\alpha}u_{-\alpha}=1$, then structure constants satisfy the following property

$$ n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta} $$

lemma

The number $n_{\alpha,\beta}n_{-\alpha,-\beta}$ is given by $-(p+1)^2$ where $p$ is the largest integer $\geq 0$ such that $\beta-p\alpha\in \Delta$. ($\alpha$ string through $\beta$)

lemma

It is possible to choose basis elements $x_{\alpha}\in \mathfrak{g}_{\alpha}$ such that $[x_{\alpha},x_{-\alpha}]=H_{\alpha}$, and $n_{-\alpha,-\beta}=-n_{\alpha,\beta}$ for all $\alpha$ and $\beta$. For this choice of $x_{\alpha}$, we have $n_{\alpha,\beta}=\pm (p+1)$

Hint : Use the Chevalley involution $\sigma :\mathfrak{g}\to \mathfrak{g}$. It is an involution with $\sigma(h)=-h$ for any $h\in \mathfrak{h}$ and $\sigma(\mathfrak{g}_{\alpha})=\mathfrak{g}_{-\alpha}$.


Chevalley basis

thm (Chevalley 1955)

The elements $\{H_{\alpha_i} : \alpha_i\in \Pi\}$ together with elements $X_{\alpha}\in \mathfrak{g}_{\alpha}$ ($\alpha\in \Delta$) chosen to satisfy $[X_{\alpha},X_{-\alpha}]=H_{\alpha}$ and $[X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}$ (if $\alpha+\beta\in \Delta)$ form a basis for a $\mathbb{Z}$-form $\mathfrak{g}_{\mathbb{Z}}$ of $\mathfrak{g}$.


  • Q. why is it surprising or non-trivial?
  • tentative answer : can we check the Jacobi identity?
  • for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket

Kostant

  • Let $\{X_{\alpha}\}$ and $\{H_{\alpha_i}\}$ be a Chevalley basis for $\mathfrak{g}$
  • let $\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}$
  • for $Q=(q_1,\cdots, q_N)$ with $q_i$ non-negative integers, put

$$ e_{Q}=\prod_{i=1}^N (X_{\alpha_i}^{q_i}{(q_i)!} $$ and $$ f_{Q}=\prod_{i=1}^N (X_{-\alpha_i}^{q_i}{(q_i)!} $$

  • for $x\in \mathfrak{g}$ and $s\in \mathbb{Z}_{\geq 0}$, put

$$ \binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g}) $$

  • let $n$ be the rank of $\mathfrak{g}$ for each $n$-tuple $P=(p_i)_{1\leq i \leq n}$, define

$$ h_{P}=\prod_{i=1}^{n}\binom{H_{\alpha_i}}{p_i} $$

thm (Kostant 1966)

The elements $$ \{f_{Q}h_Pe_{S}\} $$ for all $Q,P,S$ form an integral basis for $U_{\mathbb{Z}}$.

proof

See [H] chapter 26.


example

  • for $\mathfrak{g}=\mathfrak{sl}_2$,

\[\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}\]

  • let us compute $e^2f^2$

$$ e^2f^2=2 h^2-8 fe-2 h+f^2e^2+4 fhe $$

  • thus

$$ e^{(2)}f^{(2)}=\frac{h^2}{2}-2fe-\frac{h}{2}+f^{(2)}e^{(2)}+fhe $$

  • so we cannot use $\frac{h^k}{k!}$ as elements of integral basis
  • that's where $\binom{h}{2}=\frac{h^2}{2}-\frac{h}{2}$ comes from


properties

  • \(\exp(tE)\) and \(\exp(tF)\) exist in $U_{\mathbb{Z}}t$
  • \(\exp(tH)\) does not exist instead \((1+t)^{H}=1+\binom{H}{1}t+\binom{H^2}{2!}t^2+\cdots\) exists in $U_{\mathbb{Z}}t$
  • a nice property of this integral form is

$$ \Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}. $$ where $\Delta : U(\mathfrak{g})\to U(\mathfrak{g})$ is the coproduct defined by $$ \Delta(x)=x\otimes 1+1\otimes x $$ for $x\in \mathfrak{g}$


remarks on Chevalley groups

  • see theorem (6.11) of Curtis, 'Chevalley groups and related topics'
  • For arbitrary field $k$ and a faithful representation $V$ of $\mathfrak{g}$, we can define the Chevalley group $G_{V,k}$.
  • it actually depends on $k$ and the lattice of weights $\Gamma_{V}$ of $\mathfrak{g}$-module $V$


refs

  • [H] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, (1972).


related items