"Talk on Chevalley's integral forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 101개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
===motivating questions===
+
* linear algebra : all bases are equal (half true. diagonalization)
* why do we want integral forms?
+
* actually 'All bases are equal, but some bases are more equal than others'
 +
* usually good bases : rich source of mathematics
 
* what are good bases?
 
* what are good bases?
** Kostant found that the good integral forms are the ones with a structural base and showed that the universal enveloping algebras of finite dimensional semisimple Lie algebras have a structural base
 
** [[The fake monster formal group by Borcherds]]
 
* $\mathfrak{g}_{\mathbb{Z}}$ is a Lie algebra over $\mathbb{Z}$
 
* how can we check the consistency of Chevalley basis?
 
  
  
==Serre's relations==
+
==integral forms==
* {{수학노트|url=세르_관계식_(Serre_relations)}} 에서 가져옴
+
* Chevalley 1955, integral forms for finite-dimensional simple Lie algebras => construction of Chevalley groups ([[Chevalley integral form]])
* l : 리대수 <math>\mathfrak{g}</math>의 rank
+
* Kostant 1966, integral forms for the UEAs of simple Lie algebras (see [[The fake monster formal group by Borcherds]] for more)
* <math>(a_{ij})</math> : 카르탄 행렬
+
* <math>A</math> : algebra (or vector space) over <math>\mathbb{C}</math> (for any field <math>\mathbb{F}</math> of characteristic 0)
* 생성원 <math>e_i,h_i,f_i , (i=1,2,\cdots, l)</math>
+
;def
*  세르 관계식
+
An ''integral form'' (or a <math>\mathbb{Z}</math>-form) <math>A_\mathbb{Z}</math> of <math>A</math> to be a <math>\mathbb{Z}</math>-algebra (<math>\mathbb{Z}</math>-module) such that <math>\mathbb{C}\otimes_\mathbb{Z}A_\mathbb{Z}=A</math>.
** <math>\left[h_i,h_j\right]=0</math>
 
** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math>
 
** <math>\left[h_i,e_j\right]=a_{i,j}e_j</math>
 
** <math>\left[h_i,f_j\right]=-a_{i,j}f_j</math>
 
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)
 
** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>)
 
*  ad 는 adjoint 의 약자
 
** <math>\left(\text{ad} x\right){}^{3}\left(y\right)=[x, [x, [x, y]]]</math>
 
** <math>\left(\text{ad} x\right){}^{4}\left(y\right)=[x, [x, [x, [x, y]]]]</math>
 
  
 +
An ''integral basis'' for <math>A</math> is a <math>\mathbb{Z}</math>-basis for <math>A_\mathbb{Z}</math>.
  
===sl(3)의 예===
+
==review of basics on <math>\mathfrak{sl}_2</math>==
 +
===Lie algebra <math>\mathfrak{sl}(2)</math>===
 +
* <math>\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle</math>
 +
* commutator
 +
:<math>
 +
[E,F]=H \\
 +
[H,E]=2E \\
 +
[H,F]=-2F
 +
</math>
 +
* <math>\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle</math> is an integral form (<math>\mathfrak{g}_{\mathbb{Z}}</math> is a Lie algebra over <math>\mathbb{Z}</math>)
  
* 카르탄 행렬:<math>\left( \begin{array}{cc}  2 & -1 \\  -1 & 2 \end{array} \right)</math>
+
===UEA===
* <math>i\neq j</math> 일 때:<math>\left(\text{ad} e_i\right){}^{2}\left(e_j\right)=[e_i, [e_i,e_j]]=0</math>:<math>\left(\text{ad} f_i\right){}^{2}\left(f_j\right)=[f_i, [f_i,f_j]]=0</math>
+
* universal enveloping algebra <math>U(\mathfrak{g})</math> PBW basis
* $e_1,e_2,h_1,h_2,f_1,f_2, \left[e_1,e_2\right], \left[f_1,f_2\right]$는 리대수의 기저가 된다
+
:<math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
 +
* Hopf algebra with coproduct <math>\Delta : U(\mathfrak{g})\to U(\mathfrak{g})</math> defined by <math>\Delta(x)=x\otimes 1+1\otimes x</math> for <math>x\in \mathfrak{g}</math>
 +
* integral form and integral basis ?  answer later
  
 +
===finite dimensional representations===
 +
* <math>V</math> : irreducible finite dimensional module
 +
* <math>V=\oplus_{\mu\in\mathbb{C}}V_{\mu}</math>, <math>V_{\mu}=\{v\in V|Hv=\mu v\}</math>
 +
* there exists <math>v_0\neq 0</math> such that
 +
:<math>Ev_0=0</math>
 +
:<math>Hv_0=\lambda v_0</math>
 +
* let <math>F^{(j)}:=\frac{F^j}{j!}</math>, <math>E^{(j)}:=\frac{E^j}{j!}</math>
 +
* define <math>v_j:=F^{(j)}v_0, j \in\mathbb{Z}_{\geq 0}</math>, we have
 +
:<math>H v_j=(\lambda -2j)v_j</math>
 +
:<math>F v_j=(j+1)v_{j+1}</math>
 +
:<math>E v_j=(\lambda -j+1)v_{j-1}</math>
 +
* as <math>V</math> is finite dimensional, there exists <math>l\in \in\mathbb{Z}_{\geq 0}</math> such that <math>v_m\neq 0</math> and <math>v_{m+1}=0</math>
 +
* then <math>Ev_{m+1}=(\lambda-m)v_{m}=0</math> and so <math>\lambda-m=0</math>. So <math>\lambda \in\mathbb{Z}_{\geq 0}</math>
 +
* Let <math>V_{\mathbb{Z}}</math> be the <math>\mathbb{Z}</math>-span of <math>\{v_j|j\geq 0\}</math>
 +
* as <math>V</math> is irreducible, <math>V=\mathbb{C}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}</math>
 +
* so <math>V_{\mathbb{Z}}</math> is an integral form for <math>V</math> with integral basis <math>\{v_0,\cdots, v_m\}</math>
 +
;Question.
 +
where do <math>F^{(j)}</math> come from?
 +
;prop
 +
<math>V_{\mathbb{Z}}</math> is stable under the action of <math>F^{(j)}</math> and <math>E^{(j)}</math> and thus stable also under the action of <math>\exp (tE)</math> and <math>\exp (tF)</math> (matrices with coefficients in <math>\mathbb{Z}[t]</math>, key fact to define the Chevalley groups)
  
===UEA 에서의 관계식===
+
==basis of <math>\mathfrak{g}</math> and structure constants==
 +
===basis===
 +
* simple Lie algebra <math>\mathfrak{g}</math> over <math>\mathbb{C}</math>, we have a non-deg invariant bilinear form <math>(\cdot,\cdot)</math>.
 +
* fix a Cartan subalgebra <math>\mathfrak{h}</math>
 +
* <math>\Delta</math> : root system
 +
* <math>\Pi</math> : fundamental system
 +
* Cartan decomposition
 +
:<math>
 +
\mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right)
 +
</math>
 +
* fix <math>H_{\alpha}\in \mathfrak{h}</math> uniquely for each <math>\alpha\in \Delta</math> by
 +
:<math>
 +
\beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*}
 +
</math>
 +
;exercise
 +
<math>H_{\alpha}</math> can be written as a <math>\mathbb{Z}</math>-linear combination of <math>H_{\alpha_i}, \alpha_i\in \Pi</math>.
 +
* we can choose <math>x_{\alpha}\in \mathfrak{g}_{\alpha}</math> so that
 +
:<math>[x_{\alpha},x_{-\alpha}]=H_{\alpha}</math>
 +
* The elements <math>\{H_{\alpha_i} : \alpha_i\in \Pi\}</math> together with elements <math>x_{\alpha}\in \mathfrak{g}_{\alpha}</math> (<math>\alpha\in \Delta</math>) form a basis of <math>\mathfrak{g}</math>
  
* 카르탄행렬이 <math>(a_{ij})</math> 로 주어지는 리대수 <math>\mathfrak{g}</math>의 UEA <math>U(\mathfrak{g})</math> 에서 다음의 두 식
+
===structure constants===
:<math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0, \quad i\neq j</math>
+
* multiplication in <math>\mathfrak{g}</math>
:<math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0, \quad i\neq j</math>
+
:<math>
* 다음과 같이 표현할 수 있다:<math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}e_{i}^{1-a_{i,j}-k}e_{j}e_{i}^k=0</math>:<math>\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}f_{i}^{1-a_{i,j}-k}f_{j}f_{i}^k=0</math>
+
[h,x_{\alpha}]=\alpha(h)x_{\alpha}\\
*  풀어 쓰면 다음과 같은 형태가 된다:<math>x\otimes x\otimes y-2 x\otimes y\otimes x+y\otimes x\otimes x</math>:<math>x\otimes x\otimes x\otimes y-3 x\otimes x\otimes y\otimes x+3 x\otimes y\otimes x\otimes x-y\otimes x\otimes x\otimes x</math>:<math>x\otimes x\otimes x\otimes x\otimes y-4 x\otimes x\otimes x\otimes y\otimes x+6 x\otimes x\otimes y\otimes x\otimes x-4 x\otimes y\otimes x\otimes x\otimes x+y\otimes x\otimes x\otimes x\otimes x</math>
+
[x_{\alpha},x_{-\alpha}]=H_{\alpha}\\
 +
[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}
 +
</math>
 +
* structure constants <math>n_{\alpha,\beta}</math>
 +
* <math>n_{\alpha,\beta}\neq 0</math> only if <math>\alpha+\beta\in \Delta</math>
 +
* <math>n_{\alpha,\beta}</math> is not fixed by the above condition. how much freedom do we have?
 +
* The structure constants <math>n_{\alpha,\beta}</math> for extraspecial pairs <math>(\alpha,\beta)</math> can be chosen as arbitrary non-zero elements of <math>\mathbb{C}</math>, by appropriate choice of the elements <math>x_{\alpha}</math>.
 +
* All the structure constants <math>n_{\alpha,\beta}</math> are determined by the structure constants for extraspecial pairs.
 +
* see [[Lie Algebras of Finite and Affine Type by Carter]] for more
  
 +
==Chevalley==
 +
* a synthesis between the theory of Lie groups and the theory of finite groups
  
  
==Chevalley==
+
===observation===
* a synthesis between the theory of Lie groups and the theory of finite groups
+
* if we make another choice <math>x_{\alpha}'=u_{\alpha}x_{\alpha}</math> with <math>u_{\alpha}u_{-\alpha}=1</math>, then structure constants satisfy the following property
===리대수 <math>\mathfrak{sl}(2)</math>===
+
:<math>
* <math>L=\langle E,F,H \rangle</math>
+
n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta}
*  commutator
+
</math>
 +
;lemma
 +
The number <math>n_{\alpha,\beta}n_{-\alpha,-\beta}</math> is given by <math>-(p+1)^2</math> where <math>p</math> is the largest integer <math>\geq 0</math> such that <math>\beta-p\alpha\in \Delta</math>. (<math>\alpha</math> string through <math>\beta</math>)
 +
;remark
 +
it is the minimum <math>p\in \mathbb{Z}_{\geq 0}</math> such that
 
:<math>
 
:<math>
[E,F]=H \\
+
\left(\text{ad} x_{-\alpha}\right)^{p}\left(x_{\beta}\right)=0
[H,E]=2E \\
 
[H,F]=-2F
 
 
</math>
 
</math>
  
===observation===
 
* from the root system, we can fix $h_{\alpha}$ uniquely for each $\alpha\in \Delta$
 
* we can choose $x_{\alpha}$ so that $[x_{\alpha},x_{-\alpha}]=h_{\alpha}$
 
* the structure constants $n_{\alpha,\beta}$ where
 
$$[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}$$
 
is not fixed by the above condition
 
* but if we make another choice $x_{\alpha}'=u_{\alpha}x_{\alpha}$ with $u_{\alpha}u_{-\alpha}=1$, then structure constants satisfy the following property
 
$$
 
n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta}
 
$$
 
 
;lemma
 
;lemma
The number $n_{\alpha,\beta}n_{-\alpha,-\beta}$ is given by $-(p+1)^2$ where $p$ is the largest integer $\geq 0$ such that $\beta-p\alpha\in \Delta$
+
It is possible to choose basis elements <math>x_{\alpha}'\in \mathfrak{g}_{\alpha}</math> such that <math>[x_{\alpha}',x_{-\alpha}']=H_{\alpha}</math>, and <math>n_{-\alpha,-\beta}=-n_{\alpha,\beta}</math> for all <math>\alpha</math> and <math>\beta</math>. For this choice of <math>x_{\alpha}'</math>, we have <math>n_{\alpha,\beta}=\pm (p+1)</math>
  
===general case===
+
Hint : Use the Chevalley involution <math>\sigma :\mathfrak{g}\to \mathfrak{g}</math>. It is an involution with <math>\sigma(h)=-h</math> for any <math>h\in \mathfrak{h}</math> and <math>\sigma(x_{\alpha})=x_{-\alpha}</math>.
;thm
+
 
Chevalley bases exist
+
===Chevalley basis===
* Q. why is it surprising or non-trivial?
+
;thm (Chevalley 1955)
* tentative answer : can we check the Jacobi identity?
+
The elements <math>\{H_{\alpha_i} : \alpha_i\in \Pi\}</math> together with elements <math>X_{\alpha}\in \mathfrak{g}_{\alpha}</math> (<math>\alpha\in \Delta</math>) chosen to satisfy <math>[X_{\alpha},X_{-\alpha}]=H_{\alpha}</math> and <math>[X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}</math> (if <math>\alpha+\beta\in \Delta)</math> form a basis for a <math>\mathbb{Z}</math>-form <math>\mathfrak{g}_{\mathbb{Z}}</math> of <math>\mathfrak{g}</math>.
* for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket.
 
  
 
==Kostant==
 
==Kostant==
* universal enveloping algebra의 PBW 기저
+
===integral form===
:<math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
+
* Let <math>\{X_{\alpha}\}</math> and <math>\{H_{\alpha_i}\}</math> be a Chevalley basis for <math>\mathfrak{g}</math>
;thm
+
* Let <math>U(\mathfrak{g})_{\mathbb{Z}}</math> be the <math>\mathbb{Z}</math>-subalgebra of <math>U(\mathfrak{g})</math> generated by <math>X_{\alpha}^{(n)}=X_{\alpha}^{n}/n!</math> for all <math>\alpha\in \Delta</math> and <math>n\in \mathbb{Z}_{\geq 0}</math>.
For each choice of $r_i,s_{\alpha}\geq 0$, form the product in the given order of the elements
+
* it is an integral form for <math>U(\mathfrak{g})</math>
$$
+
* can we describe its integral basis?
\binom{h_i}{r_i}
+
 
$$
+
===basis===
and the elements
+
* let <math>\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}</math> be an ordered set of positive roots
$$
+
* for <math>Q=(q_1,\cdots, q_N)</math> with <math>q_i\in \mathbb{Z}_{\geq 0}</math>, put
\frac{x_{\alpha}^{s_{\alpha}}}{s_{\alpha}!}
+
:<math>
$$
+
e_{Q}=\prod_{i=1}^N X_{\alpha_i}^{(q_i)}
for $i=1,\cdots, \ell$ and $\alpha\in \Phi$. Then the resulting collection if a basis for $U_{\mathbb{Z}}$ as a free $\mathbb{Z}$-module
+
</math>
* See '''[H]''' chapter 26?
+
* for <math>S=(s_1,\cdots, s_N)</math> with <math>q_i\in \mathbb{Z}_{\geq 0}</math>, put
* for examplem, one can take
+
:<math>
 +
f_{S}=\prod_{i=1}^N X_{-\alpha_i}^{(s_i)}
 +
</math>
 +
* for <math>x\in \mathfrak{g}</math> and <math>s\in \mathbb{Z}_{\geq 0}</math>, put
 +
:<math>
 +
\binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g})
 +
</math>
 +
* let <math>l</math> be the rank of <math>\mathfrak{g}</math> for each <math>l</math>-tuple <math>P=(p_1,\cdots, p_l)</math>, define
 +
:<math>
 +
h_{P}=\prod_{i=1}^{l}\binom{H_{\alpha_i}}{p_i}
 +
</math>
 +
;thm (Kostant 1966)
 +
The elements
 +
:<math>
 +
\{f_{Q}h_Pe_{S}|Q\in\mathbb{Z}_{\geq 0}^{N},P\in\mathbb{Z}_{\geq 0}^{l},S\in\mathbb{Z}_{\geq 0}^{N}\}
 +
</math>
 +
form an integral basis for <math>U(\mathfrak{g})_{\mathbb{Z}}</math>.
 +
* See Humphreys chapter 26 for a proof
 +
 
 +
===example===
 +
* for <math>\mathfrak{g}=\mathfrak{sl}_2</math>,
 
:<math>\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}</math>
 
:<math>\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}</math>
* <math>\exp(tE)</math> and <math>\exp(tF)</math> exist
+
* let us compute <math>E^2F^2</math>
* <math>\exp(tH)</math> does not exist instead <math>(1+t)^{H}=1+\binom{H}{1}t+\binom{H^2}{2!}t^2+\cdots</math> exists
+
:<math>
 +
E^2F^2=2 H^2-8 FE-2 H+F^2E^2+4 FHE
 +
</math>
 +
* thus
 +
:<math>
 +
E^{(2)}F^{(2)}=\frac{H^2}{2}-2FE-\frac{H}{2}+F^{(2)}E^{(2)}+FHE
 +
</math>
 +
* so we cannot use <math>\frac{H^k}{k!}</math> as elements of integral basis
 +
* that's where <math>\binom{H}{2}=\frac{H^2}{2}-\frac{H}{2}</math> comes from. In general, we have
 +
:<math>
 +
E^{(m)}F^{(n)}=\sum_{j=0}^k F^{(n-j)}\binom{H-m-n+2j}{j}E^{(m-j)}
 +
</math>
 +
where <math>k=\min(m,n)</math>
 +
;exercise
 +
Let <math>j,k\in\mathbb{Z}_{\geq 0}</math>. The polynomial <math>\binom{x-j}{k}</math> can be written as a <math>\mathbb{Z}</math>-linear combination of <math>\binom{x}{i}</math>'s.
 +
 
 +
===properties===
 +
* <math>\exp(tE)</math> and <math>\exp(tF)</math> exist in <math>U(\mathfrak{g})_{\mathbb{Z}}[[t]]</math>
 +
* a nice property of this integral form is
 +
:<math>
 +
\Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}.
 +
</math>
 +
where <math>Z_{\alpha}=f_{Q}h_Pe_{S}</math>, <math>\alpha=(Q,P,S)\in\mathbb{Z}_{\geq 0}^{N+l+N}</math> and <math>\Delta : U(\mathfrak{g})\to U(\mathfrak{g})</math> is the coproduct defined by
 +
:<math>
 +
\Delta(x)=x\otimes 1+1\otimes x
 +
</math>
 +
for <math>x\in \mathfrak{g}</math>
 +
* partial ordering on <math>\mathbb{Z}_{\geq 0}^{N+l+N}</math>
  
 +
==remarks on Chevalley groups==
 +
;def
 +
An ''admissible'' integral form of a <math>\mathfrak{g}</math>-module <math>V</math> is an integral form <math>M</math> such that <math>U(\mathfrak{g})_{\mathbb{Z}}\cdot M\subseteq M</math>
 +
;prop
 +
Let <math>V</math> be a finite dimensional <math>\mathfrak{g}</math>-module. Then <math>V</math> has an admissible integral form. If <math>V</math> is irreducible and <math>v_0</math> is a highest weight vector, then <math>U(\mathfrak{g})_{\mathbb{Z}}.v_0</math> is an admissible integral form of <math>V</math>.
  
==refs==
+
* Let <math>(\rho,V)</math> a faithful representation of <math>\mathfrak{g}</math> and <math>M</math> an admissible integral form
* '''[H]''' J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, (1972).
+
* Choose an integral basis <math>\{m_1,\cdots, m_d\}</math>of <math>M</math>. Then <math>e_{\alpha}(t):=\exp \left(t\rho(X_{\alpha})\right)\in GL_{d}(\mathbb{Z}[t])</math>
 +
* now let <math>k</math> arbitrary field and <math>M^k=k\otimes_{\mathbb{Z}}M</math>, a vector space over <math>k</math>
 +
;def
 +
The ''Chevalley group'' <math>G_{V,k}</math> is the subgroup of <math>GL(M^k)</math> generated by all <math>e_{\alpha}(u),\, \alpha\in \Delta, u\in k</math> regarded as a <math>k</math>-linear transformation of <math>M^k</math>
 +
* it only depends on <math>k</math> and the lattice of weights <math>\Gamma_{V}</math> of <math>\mathfrak{g}</math>-module <math>V</math> (not on <math>M</math>)
 +
* When <math>\Gamma_V=Q</math>, <math>Q</math> the root lattice, we call it an adjoint Chevalley group
 +
;thm (Chevalley-Dickson theorem)
 +
Let <math>G</math> be an adjoint Chevalley group. If <math>|k|=2</math>, suppose <math>\Delta</math> is not of type <math>A_1,B_2</math> or <math>G_2</math>. If <math>|k|=3</math>, suppose that <math>\Delta</math> is not of type <math>A_1</math>. Then <math>G</math> is a simple group.
 +
* See (Curtis, 'Chevalley groups and related topics' thm 6.11) for a proof.
 +
* [[Finite reductive groups and groups of Lie type]]
  
[[분류:talks]]
 
 
[[분류:talks and lecture notes]]
 
[[분류:talks and lecture notes]]
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 20:04 기준 최신판

introduction

  • linear algebra : all bases are equal (half true. diagonalization)
  • actually 'All bases are equal, but some bases are more equal than others'
  • usually good bases : rich source of mathematics
  • what are good bases?


integral forms

  • Chevalley 1955, integral forms for finite-dimensional simple Lie algebras => construction of Chevalley groups (Chevalley integral form)
  • Kostant 1966, integral forms for the UEAs of simple Lie algebras (see The fake monster formal group by Borcherds for more)
  • \(A\) : algebra (or vector space) over \(\mathbb{C}\) (for any field \(\mathbb{F}\) of characteristic 0)
def

An integral form (or a \(\mathbb{Z}\)-form) \(A_\mathbb{Z}\) of \(A\) to be a \(\mathbb{Z}\)-algebra (\(\mathbb{Z}\)-module) such that \(\mathbb{C}\otimes_\mathbb{Z}A_\mathbb{Z}=A\).

An integral basis for \(A\) is a \(\mathbb{Z}\)-basis for \(A_\mathbb{Z}\).

review of basics on \(\mathfrak{sl}_2\)

Lie algebra \(\mathfrak{sl}(2)\)

  • \(\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle\)
  • commutator

\[ [E,F]=H \\ [H,E]=2E \\ [H,F]=-2F \]

  • \(\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle\) is an integral form (\(\mathfrak{g}_{\mathbb{Z}}\) is a Lie algebra over \(\mathbb{Z}\))

UEA

  • universal enveloping algebra \(U(\mathfrak{g})\) PBW basis

\[\{F^kH^lE^m|k,l,m\geq 0\}\]

  • Hopf algebra with coproduct \(\Delta : U(\mathfrak{g})\to U(\mathfrak{g})\) defined by \(\Delta(x)=x\otimes 1+1\otimes x\) for \(x\in \mathfrak{g}\)
  • integral form and integral basis ? answer later

finite dimensional representations

  • \(V\) : irreducible finite dimensional module
  • \(V=\oplus_{\mu\in\mathbb{C}}V_{\mu}\), \(V_{\mu}=\{v\in V|Hv=\mu v\}\)
  • there exists \(v_0\neq 0\) such that

\[Ev_0=0\] \[Hv_0=\lambda v_0\]

  • let \(F^{(j)}:=\frac{F^j}{j!}\), \(E^{(j)}:=\frac{E^j}{j!}\)
  • define \(v_j:=F^{(j)}v_0, j \in\mathbb{Z}_{\geq 0}\), we have

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j+1)v_{j+1}\] \[E v_j=(\lambda -j+1)v_{j-1}\]

  • as \(V\) is finite dimensional, there exists \(l\in \in\mathbb{Z}_{\geq 0}\) such that \(v_m\neq 0\) and \(v_{m+1}=0\)
  • then \(Ev_{m+1}=(\lambda-m)v_{m}=0\) and so \(\lambda-m=0\). So \(\lambda \in\mathbb{Z}_{\geq 0}\)
  • Let \(V_{\mathbb{Z}}\) be the \(\mathbb{Z}\)-span of \(\{v_j|j\geq 0\}\)
  • as \(V\) is irreducible, \(V=\mathbb{C}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}\)
  • so \(V_{\mathbb{Z}}\) is an integral form for \(V\) with integral basis \(\{v_0,\cdots, v_m\}\)
Question.

where do \(F^{(j)}\) come from?

prop

\(V_{\mathbb{Z}}\) is stable under the action of \(F^{(j)}\) and \(E^{(j)}\) and thus stable also under the action of \(\exp (tE)\) and \(\exp (tF)\) (matrices with coefficients in \(\mathbb{Z}[t]\), key fact to define the Chevalley groups)

basis of \(\mathfrak{g}\) and structure constants

basis

  • simple Lie algebra \(\mathfrak{g}\) over \(\mathbb{C}\), we have a non-deg invariant bilinear form \((\cdot,\cdot)\).
  • fix a Cartan subalgebra \(\mathfrak{h}\)
  • \(\Delta\) : root system
  • \(\Pi\) : fundamental system
  • Cartan decomposition

\[ \mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right) \]

  • fix \(H_{\alpha}\in \mathfrak{h}\) uniquely for each \(\alpha\in \Delta\) by

\[ \beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*} \]

exercise

\(H_{\alpha}\) can be written as a \(\mathbb{Z}\)-linear combination of \(H_{\alpha_i}, \alpha_i\in \Pi\).

  • we can choose \(x_{\alpha}\in \mathfrak{g}_{\alpha}\) so that

\[[x_{\alpha},x_{-\alpha}]=H_{\alpha}\]

  • The elements \(\{H_{\alpha_i} : \alpha_i\in \Pi\}\) together with elements \(x_{\alpha}\in \mathfrak{g}_{\alpha}\) (\(\alpha\in \Delta\)) form a basis of \(\mathfrak{g}\)

structure constants

  • multiplication in \(\mathfrak{g}\)

\[ [h,x_{\alpha}]=\alpha(h)x_{\alpha}\\ [x_{\alpha},x_{-\alpha}]=H_{\alpha}\\ [x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta} \]

  • structure constants \(n_{\alpha,\beta}\)
  • \(n_{\alpha,\beta}\neq 0\) only if \(\alpha+\beta\in \Delta\)
  • \(n_{\alpha,\beta}\) is not fixed by the above condition. how much freedom do we have?
  • The structure constants \(n_{\alpha,\beta}\) for extraspecial pairs \((\alpha,\beta)\) can be chosen as arbitrary non-zero elements of \(\mathbb{C}\), by appropriate choice of the elements \(x_{\alpha}\).
  • All the structure constants \(n_{\alpha,\beta}\) are determined by the structure constants for extraspecial pairs.
  • see Lie Algebras of Finite and Affine Type by Carter for more

Chevalley

  • a synthesis between the theory of Lie groups and the theory of finite groups


observation

  • if we make another choice \(x_{\alpha}'=u_{\alpha}x_{\alpha}\) with \(u_{\alpha}u_{-\alpha}=1\), then structure constants satisfy the following property

\[ n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta} \]

lemma

The number \(n_{\alpha,\beta}n_{-\alpha,-\beta}\) is given by \(-(p+1)^2\) where \(p\) is the largest integer \(\geq 0\) such that \(\beta-p\alpha\in \Delta\). (\(\alpha\) string through \(\beta\))

remark

it is the minimum \(p\in \mathbb{Z}_{\geq 0}\) such that \[ \left(\text{ad} x_{-\alpha}\right)^{p}\left(x_{\beta}\right)=0 \]

lemma

It is possible to choose basis elements \(x_{\alpha}'\in \mathfrak{g}_{\alpha}\) such that \([x_{\alpha}',x_{-\alpha}']=H_{\alpha}\), and \(n_{-\alpha,-\beta}=-n_{\alpha,\beta}\) for all \(\alpha\) and \(\beta\). For this choice of \(x_{\alpha}'\), we have \(n_{\alpha,\beta}=\pm (p+1)\)

Hint : Use the Chevalley involution \(\sigma :\mathfrak{g}\to \mathfrak{g}\). It is an involution with \(\sigma(h)=-h\) for any \(h\in \mathfrak{h}\) and \(\sigma(x_{\alpha})=x_{-\alpha}\).

Chevalley basis

thm (Chevalley 1955)

The elements \(\{H_{\alpha_i} : \alpha_i\in \Pi\}\) together with elements \(X_{\alpha}\in \mathfrak{g}_{\alpha}\) (\(\alpha\in \Delta\)) chosen to satisfy \([X_{\alpha},X_{-\alpha}]=H_{\alpha}\) and \([X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}\) (if \(\alpha+\beta\in \Delta)\) form a basis for a \(\mathbb{Z}\)-form \(\mathfrak{g}_{\mathbb{Z}}\) of \(\mathfrak{g}\).

Kostant

integral form

  • Let \(\{X_{\alpha}\}\) and \(\{H_{\alpha_i}\}\) be a Chevalley basis for \(\mathfrak{g}\)
  • Let \(U(\mathfrak{g})_{\mathbb{Z}}\) be the \(\mathbb{Z}\)-subalgebra of \(U(\mathfrak{g})\) generated by \(X_{\alpha}^{(n)}=X_{\alpha}^{n}/n!\) for all \(\alpha\in \Delta\) and \(n\in \mathbb{Z}_{\geq 0}\).
  • it is an integral form for \(U(\mathfrak{g})\)
  • can we describe its integral basis?

basis

  • let \(\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}\) be an ordered set of positive roots
  • for \(Q=(q_1,\cdots, q_N)\) with \(q_i\in \mathbb{Z}_{\geq 0}\), put

\[ e_{Q}=\prod_{i=1}^N X_{\alpha_i}^{(q_i)} \]

  • for \(S=(s_1,\cdots, s_N)\) with \(q_i\in \mathbb{Z}_{\geq 0}\), put

\[ f_{S}=\prod_{i=1}^N X_{-\alpha_i}^{(s_i)} \]

  • for \(x\in \mathfrak{g}\) and \(s\in \mathbb{Z}_{\geq 0}\), put

\[ \binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g}) \]

  • let \(l\) be the rank of \(\mathfrak{g}\) for each \(l\)-tuple \(P=(p_1,\cdots, p_l)\), define

\[ h_{P}=\prod_{i=1}^{l}\binom{H_{\alpha_i}}{p_i} \]

thm (Kostant 1966)

The elements \[ \{f_{Q}h_Pe_{S}|Q\in\mathbb{Z}_{\geq 0}^{N},P\in\mathbb{Z}_{\geq 0}^{l},S\in\mathbb{Z}_{\geq 0}^{N}\} \] form an integral basis for \(U(\mathfrak{g})_{\mathbb{Z}}\).

  • See Humphreys chapter 26 for a proof

example

  • for \(\mathfrak{g}=\mathfrak{sl}_2\),

\[\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}\]

  • let us compute \(E^2F^2\)

\[ E^2F^2=2 H^2-8 FE-2 H+F^2E^2+4 FHE \]

  • thus

\[ E^{(2)}F^{(2)}=\frac{H^2}{2}-2FE-\frac{H}{2}+F^{(2)}E^{(2)}+FHE \]

  • so we cannot use \(\frac{H^k}{k!}\) as elements of integral basis
  • that's where \(\binom{H}{2}=\frac{H^2}{2}-\frac{H}{2}\) comes from. In general, we have

\[ E^{(m)}F^{(n)}=\sum_{j=0}^k F^{(n-j)}\binom{H-m-n+2j}{j}E^{(m-j)} \] where \(k=\min(m,n)\)

exercise

Let \(j,k\in\mathbb{Z}_{\geq 0}\). The polynomial \(\binom{x-j}{k}\) can be written as a \(\mathbb{Z}\)-linear combination of \(\binom{x}{i}\)'s.

properties

  • \(\exp(tE)\) and \(\exp(tF)\) exist in \(U(\mathfrak{g})_{\mathbb{Z}}[[t]]\)
  • a nice property of this integral form is

\[ \Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}. \] where \(Z_{\alpha}=f_{Q}h_Pe_{S}\), \(\alpha=(Q,P,S)\in\mathbb{Z}_{\geq 0}^{N+l+N}\) and \(\Delta : U(\mathfrak{g})\to U(\mathfrak{g})\) is the coproduct defined by \[ \Delta(x)=x\otimes 1+1\otimes x \] for \(x\in \mathfrak{g}\)

  • partial ordering on \(\mathbb{Z}_{\geq 0}^{N+l+N}\)

remarks on Chevalley groups

def

An admissible integral form of a \(\mathfrak{g}\)-module \(V\) is an integral form \(M\) such that \(U(\mathfrak{g})_{\mathbb{Z}}\cdot M\subseteq M\)

prop

Let \(V\) be a finite dimensional \(\mathfrak{g}\)-module. Then \(V\) has an admissible integral form. If \(V\) is irreducible and \(v_0\) is a highest weight vector, then \(U(\mathfrak{g})_{\mathbb{Z}}.v_0\) is an admissible integral form of \(V\).

  • Let \((\rho,V)\) a faithful representation of \(\mathfrak{g}\) and \(M\) an admissible integral form
  • Choose an integral basis \(\{m_1,\cdots, m_d\}\)of \(M\). Then \(e_{\alpha}(t):=\exp \left(t\rho(X_{\alpha})\right)\in GL_{d}(\mathbb{Z}[t])\)
  • now let \(k\) arbitrary field and \(M^k=k\otimes_{\mathbb{Z}}M\), a vector space over \(k\)
def

The Chevalley group \(G_{V,k}\) is the subgroup of \(GL(M^k)\) generated by all \(e_{\alpha}(u),\, \alpha\in \Delta, u\in k\) regarded as a \(k\)-linear transformation of \(M^k\)

  • it only depends on \(k\) and the lattice of weights \(\Gamma_{V}\) of \(\mathfrak{g}\)-module \(V\) (not on \(M\))
  • When \(\Gamma_V=Q\), \(Q\) the root lattice, we call it an adjoint Chevalley group
thm (Chevalley-Dickson theorem)

Let \(G\) be an adjoint Chevalley group. If \(|k|=2\), suppose \(\Delta\) is not of type \(A_1,B_2\) or \(G_2\). If \(|k|=3\), suppose that \(\Delta\) is not of type \(A_1\). Then \(G\) is a simple group.