"Talk on Chevalley's integral forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 13개는 보이지 않습니다)
7번째 줄: 7번째 줄:
  
 
==integral forms==
 
==integral forms==
* $A$ : algebra (or vector space) over $\mathbb{C}$ (for any field $\mathbb{F}$ of characteristic 0)
+
* Chevalley 1955, integral forms for finite-dimensional simple Lie algebras => construction of Chevalley groups ([[Chevalley integral form]])
 +
* Kostant 1966, integral forms for the UEAs of simple Lie algebras (see [[The fake monster formal group by Borcherds]] for more)
 +
* <math>A</math> : algebra (or vector space) over <math>\mathbb{C}</math> (for any field <math>\mathbb{F}</math> of characteristic 0)
 
;def
 
;def
An ''integral form'' (or a $\mathbb{Z}$-form) $A_\mathbb{Z}$ of $A$ to be a $\mathbb{Z}$-algebra ($\mathbb{Z}$-module) such that $\mathbb{C}\otimes_\mathbb{Z}A_\mathbb{Z}=A$.  
+
An ''integral form'' (or a <math>\mathbb{Z}</math>-form) <math>A_\mathbb{Z}</math> of <math>A</math> to be a <math>\mathbb{Z}</math>-algebra (<math>\mathbb{Z}</math>-module) such that <math>\mathbb{C}\otimes_\mathbb{Z}A_\mathbb{Z}=A</math>.  
  
An ''integral basis'' for $A$ is a $\mathbb{Z}$-basis for $A_\mathbb{Z}$.
+
An ''integral basis'' for <math>A</math> is a <math>\mathbb{Z}</math>-basis for <math>A_\mathbb{Z}</math>.
* Chevalley 1955, integral forms for finite-dimensional simple Lie algebras
 
** His work led to the construction of Chevalley groups
 
* Kostant 1966, integral forms for the UEAs of simple Lie algebras (see [[The fake monster formal group by Borcherds]] for more)
 
  
==review of basics on $\mathfrak{sl}_2$==
+
==review of basics on <math>\mathfrak{sl}_2</math>==
 
===Lie algebra <math>\mathfrak{sl}(2)</math>===
 
===Lie algebra <math>\mathfrak{sl}(2)</math>===
 
* <math>\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle</math>
 
* <math>\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle</math>
25번째 줄: 24번째 줄:
 
[H,F]=-2F
 
[H,F]=-2F
 
</math>
 
</math>
* <math>\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle</math> is an integral form ($\mathfrak{g}_{\mathbb{Z}}$ is a Lie algebra over $\mathbb{Z}$)
+
* <math>\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle</math> is an integral form (<math>\mathfrak{g}_{\mathbb{Z}}</math> is a Lie algebra over <math>\mathbb{Z}</math>)
  
 
===UEA===
 
===UEA===
* universal enveloping algebra $U(\mathfrak{g})$ PBW basis
+
* universal enveloping algebra <math>U(\mathfrak{g})</math> PBW basis
 
:<math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
 
:<math>\{F^kH^lE^m|k,l,m\geq 0\}</math>
* Hopf algebra with coproduct $\Delta : U(\mathfrak{g})\to U(\mathfrak{g})$ defined by $\Delta(x)=x\otimes 1+1\otimes x$ for $x\in \mathfrak{g}$
+
* Hopf algebra with coproduct <math>\Delta : U(\mathfrak{g})\to U(\mathfrak{g})</math> defined by <math>\Delta(x)=x\otimes 1+1\otimes x</math> for <math>x\in \mathfrak{g}</math>
 
* integral form and integral basis ?  answer later
 
* integral form and integral basis ?  answer later
  
 
===finite dimensional representations===
 
===finite dimensional representations===
 
* <math>V</math> : irreducible finite dimensional module
 
* <math>V</math> : irreducible finite dimensional module
* <math>V=\oplus_{\lambda\in\mathbb{C}}V_{\mu}</math>, <math>V_{\mu}=\{v\in V|Hv=\mu v\}</math>
+
* <math>V=\oplus_{\mu\in\mathbb{C}}V_{\mu}</math>, <math>V_{\mu}=\{v\in V|Hv=\mu v\}</math>
 
* there exists <math>v_0\neq 0</math> such that
 
* there exists <math>v_0\neq 0</math> such that
 
:<math>Ev_0=0</math>
 
:<math>Ev_0=0</math>
 
:<math>Hv_0=\lambda v_0</math>
 
:<math>Hv_0=\lambda v_0</math>
* let $F^{(j)}:=\frac{F^j}{j!}$, $E^{(j)}:=\frac{E^j}{j!}$
+
* let <math>F^{(j)}:=\frac{F^j}{j!}</math>, <math>E^{(j)}:=\frac{E^j}{j!}</math>
 
* define <math>v_j:=F^{(j)}v_0, j \in\mathbb{Z}_{\geq 0}</math>, we have
 
* define <math>v_j:=F^{(j)}v_0, j \in\mathbb{Z}_{\geq 0}</math>, we have
 
:<math>H v_j=(\lambda -2j)v_j</math>
 
:<math>H v_j=(\lambda -2j)v_j</math>
 
:<math>F v_j=(j+1)v_{j+1}</math>
 
:<math>F v_j=(j+1)v_{j+1}</math>
 
:<math>E v_j=(\lambda -j+1)v_{j-1}</math>
 
:<math>E v_j=(\lambda -j+1)v_{j-1}</math>
* as $V$ is finite dimensional, there exists $l\in \in\mathbb{Z}_{\geq 0}$ such that $v_m\neq 0$ and $v_{m+1}=0$
+
* as <math>V</math> is finite dimensional, there exists <math>l\in \in\mathbb{Z}_{\geq 0}</math> such that <math>v_m\neq 0</math> and <math>v_{m+1}=0</math>
* then $Ev_{m+1}=(\lambda-m)v_{m}=0$ and so <math>\lambda-m=0</math>. So $\lambda \in\mathbb{Z}_{\geq 0}$
+
* then <math>Ev_{m+1}=(\lambda-m)v_{m}=0</math> and so <math>\lambda-m=0</math>. So <math>\lambda \in\mathbb{Z}_{\geq 0}</math>
* Let $V_{\mathbb{Z}}$ be the $\mathbb{Z}$-span of <math>\{v_j|j\geq 0\}</math>
+
* Let <math>V_{\mathbb{Z}}</math> be the <math>\mathbb{Z}</math>-span of <math>\{v_j|j\geq 0\}</math>
* as $V$ is irreducible, $V=\mathbb{C}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}$
+
* as <math>V</math> is irreducible, <math>V=\mathbb{C}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}</math>
* so $V_{\mathbb{Z}}$ is an integral form for $V$ with integral basis $v_j$
+
* so <math>V_{\mathbb{Z}}</math> is an integral form for <math>V</math> with integral basis <math>\{v_0,\cdots, v_m\}</math>
 
;Question.
 
;Question.
where do $F^{(j)}$ come from?
+
where do <math>F^{(j)}</math> come from?
 
;prop
 
;prop
$V_{\mathbb{Z}}$ is stable under the action of $F^{(j)}$ and $E^{(j)}$ and thus stable also under the action of $\exp (tE)$ and $\exp (tF)$ (matrices with integral coefficients, key fact to define the Chevalley groups)
+
<math>V_{\mathbb{Z}}</math> is stable under the action of <math>F^{(j)}</math> and <math>E^{(j)}</math> and thus stable also under the action of <math>\exp (tE)</math> and <math>\exp (tF)</math> (matrices with coefficients in <math>\mathbb{Z}[t]</math>, key fact to define the Chevalley groups)
  
==basis of $\mathfrak{g}$ and structure constants==
+
==basis of <math>\mathfrak{g}</math> and structure constants==
 
===basis===
 
===basis===
* simple Lie algebra $\mathfrak{g}$, we have a non-deg invariant bilinear form $(\cdot,\cdot)$.  
+
* simple Lie algebra <math>\mathfrak{g}</math> over <math>\mathbb{C}</math>, we have a non-deg invariant bilinear form <math>(\cdot,\cdot)</math>.  
* fix a Cartan subalgebra $\mathfrak{h}$
+
* fix a Cartan subalgebra <math>\mathfrak{h}</math>
* $\Delta$ : root system
+
* <math>\Delta</math> : root system
* $\Pi$ : fundamental system
+
* <math>\Pi</math> : fundamental system
 
* Cartan decomposition
 
* Cartan decomposition
$$
+
:<math>
 
\mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right)
 
\mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right)
$$
+
</math>
* fix $H_{\alpha}\in \mathfrak{h}$ uniquely for each $\alpha\in \Delta$ by
+
* fix <math>H_{\alpha}\in \mathfrak{h}</math> uniquely for each <math>\alpha\in \Delta</math> by
$$
+
:<math>
 
\beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*}
 
\beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*}
$$
+
</math>
 
;exercise
 
;exercise
$H_{\alpha}$ can be written as a $\mathbb{Z}$-linear combination of $H_{\alpha_i}, \alpha_i\in \Pi$.
+
<math>H_{\alpha}</math> can be written as a <math>\mathbb{Z}</math>-linear combination of <math>H_{\alpha_i}, \alpha_i\in \Pi</math>.
* we can choose $x_{\alpha}\in \mathfrak{g}_{\alpha}$ so that  
+
* we can choose <math>x_{\alpha}\in \mathfrak{g}_{\alpha}</math> so that  
$$[x_{\alpha},x_{-\alpha}]=H_{\alpha}$$
+
:<math>[x_{\alpha},x_{-\alpha}]=H_{\alpha}</math>
* The elements $\{H_{\alpha_i} : \alpha_i\in \Pi\}$ together with elements $x_{\alpha}\in \mathfrak{g}_{\alpha}$ ($\alpha\in \Delta$) form a basis of $\mathfrak{g}$
+
* The elements <math>\{H_{\alpha_i} : \alpha_i\in \Pi\}</math> together with elements <math>x_{\alpha}\in \mathfrak{g}_{\alpha}</math> (<math>\alpha\in \Delta</math>) form a basis of <math>\mathfrak{g}</math>
  
 
===structure constants===
 
===structure constants===
* multiplication in $\mathfrak{g}$
+
* multiplication in <math>\mathfrak{g}</math>
$$
+
:<math>
 
[h,x_{\alpha}]=\alpha(h)x_{\alpha}\\
 
[h,x_{\alpha}]=\alpha(h)x_{\alpha}\\
 
[x_{\alpha},x_{-\alpha}]=H_{\alpha}\\
 
[x_{\alpha},x_{-\alpha}]=H_{\alpha}\\
 
[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}
 
[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}
$$
+
</math>
* structure constants $n_{\alpha,\beta}$
+
* structure constants <math>n_{\alpha,\beta}</math>
* $n_{\alpha,\beta}\neq 0$ only if $\alpha+\beta\in \Delta$
+
* <math>n_{\alpha,\beta}\neq 0</math> only if <math>\alpha+\beta\in \Delta</math>
* $n_{\alpha,\beta}$ is not fixed by the above condition. how much freedom do we have?
+
* <math>n_{\alpha,\beta}</math> is not fixed by the above condition. how much freedom do we have?
* The structure constants $n_{\alpha,\beta}$ for extraspecial pairs $(\alpha,\beta)$ can be chosen as arbitrary non-zero elements of $\mathbb{C}$, by appropriate choice of the elements $x_{\alpha}$.
+
* The structure constants <math>n_{\alpha,\beta}</math> for extraspecial pairs <math>(\alpha,\beta)</math> can be chosen as arbitrary non-zero elements of <math>\mathbb{C}</math>, by appropriate choice of the elements <math>x_{\alpha}</math>.
* All the structure constants $n_{\alpha,\beta}$ are determined by the structure constants for extraspecial pairs.
+
* All the structure constants <math>n_{\alpha,\beta}</math> are determined by the structure constants for extraspecial pairs.
 
* see [[Lie Algebras of Finite and Affine Type by Carter]] for more
 
* see [[Lie Algebras of Finite and Affine Type by Carter]] for more
  
 
==Chevalley==
 
==Chevalley==
 
* a synthesis between the theory of Lie groups and the theory of finite groups  
 
* a synthesis between the theory of Lie groups and the theory of finite groups  
 +
  
 
===observation===
 
===observation===
* if we make another choice $x_{\alpha}'=u_{\alpha}x_{\alpha}$ with $u_{\alpha}u_{-\alpha}=1$, then structure constants satisfy the following property
+
* if we make another choice <math>x_{\alpha}'=u_{\alpha}x_{\alpha}</math> with <math>u_{\alpha}u_{-\alpha}=1</math>, then structure constants satisfy the following property
$$
+
:<math>
 
n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta}
 
n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta}
$$
+
</math>
 
;lemma
 
;lemma
The number $n_{\alpha,\beta}n_{-\alpha,-\beta}$ is given by $-(p+1)^2$ where $p$ is the largest integer $\geq 0$ such that $\beta-p\alpha\in \Delta$. ($\alpha$ string through $\beta$)  
+
The number <math>n_{\alpha,\beta}n_{-\alpha,-\beta}</math> is given by <math>-(p+1)^2</math> where <math>p</math> is the largest integer <math>\geq 0</math> such that <math>\beta-p\alpha\in \Delta</math>. (<math>\alpha</math> string through <math>\beta</math>)  
 
;remark
 
;remark
it is the minimum $p\in \mathbb{Z}_{\geq 0}$ such that  
+
it is the minimum <math>p\in \mathbb{Z}_{\geq 0}</math> such that  
$$
+
:<math>
 
\left(\text{ad} x_{-\alpha}\right)^{p}\left(x_{\beta}\right)=0
 
\left(\text{ad} x_{-\alpha}\right)^{p}\left(x_{\beta}\right)=0
$$
+
</math>
  
 
;lemma
 
;lemma
It is possible to choose basis elements $x_{\alpha}'\in \mathfrak{g}_{\alpha}$ such that $[x_{\alpha}',x_{-\alpha}']=H_{\alpha}$, and $n_{-\alpha,-\beta}=-n_{\alpha,\beta}$ for all $\alpha$ and $\beta$. For this choice of $x_{\alpha}'$, we have $n_{\alpha,\beta}=\pm (p+1)$
+
It is possible to choose basis elements <math>x_{\alpha}'\in \mathfrak{g}_{\alpha}</math> such that <math>[x_{\alpha}',x_{-\alpha}']=H_{\alpha}</math>, and <math>n_{-\alpha,-\beta}=-n_{\alpha,\beta}</math> for all <math>\alpha</math> and <math>\beta</math>. For this choice of <math>x_{\alpha}'</math>, we have <math>n_{\alpha,\beta}=\pm (p+1)</math>
  
Hint : Use the Chevalley involution $\sigma :\mathfrak{g}\to \mathfrak{g}$. It is an involution with $\sigma(h)=-h$ for any $h\in \mathfrak{h}$ and $\sigma(x_{\alpha})=x_{-\alpha}$.
+
Hint : Use the Chevalley involution <math>\sigma :\mathfrak{g}\to \mathfrak{g}</math>. It is an involution with <math>\sigma(h)=-h</math> for any <math>h\in \mathfrak{h}</math> and <math>\sigma(x_{\alpha})=x_{-\alpha}</math>.
  
 
===Chevalley basis===
 
===Chevalley basis===
 
;thm (Chevalley 1955)
 
;thm (Chevalley 1955)
The elements $\{H_{\alpha_i} : \alpha_i\in \Pi\}$ together with elements $X_{\alpha}\in \mathfrak{g}_{\alpha}$ ($\alpha\in \Delta$) chosen to satisfy $[X_{\alpha},X_{-\alpha}]=H_{\alpha}$ and $[X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}$ (if $\alpha+\beta\in \Delta)$ form a basis for a $\mathbb{Z}$-form $\mathfrak{g}_{\mathbb{Z}}$ of $\mathfrak{g}$.
+
The elements <math>\{H_{\alpha_i} : \alpha_i\in \Pi\}</math> together with elements <math>X_{\alpha}\in \mathfrak{g}_{\alpha}</math> (<math>\alpha\in \Delta</math>) chosen to satisfy <math>[X_{\alpha},X_{-\alpha}]=H_{\alpha}</math> and <math>[X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}</math> (if <math>\alpha+\beta\in \Delta)</math> form a basis for a <math>\mathbb{Z}</math>-form <math>\mathfrak{g}_{\mathbb{Z}}</math> of <math>\mathfrak{g}</math>.
  
 
==Kostant==
 
==Kostant==
 
===integral form===
 
===integral form===
* Let $\{X_{\alpha}\}$ and $\{H_{\alpha_i}\}$ be a Chevalley basis for $\mathfrak{g}$
+
* Let <math>\{X_{\alpha}\}</math> and <math>\{H_{\alpha_i}\}</math> be a Chevalley basis for <math>\mathfrak{g}</math>
* Let $U(\mathfrak{g})_{\mathbb{Z}}$ be the $\mathbb{Z}$-subalgebra of $U(\mathfrak{g})$ generated by $X_{\alpha}^{(n)}=X_{\alpha}^{n}/n!$ for all $\alpha\in \Delta$ and $n\in \mathbb{Z}_{\geq 0}$.
+
* Let <math>U(\mathfrak{g})_{\mathbb{Z}}</math> be the <math>\mathbb{Z}</math>-subalgebra of <math>U(\mathfrak{g})</math> generated by <math>X_{\alpha}^{(n)}=X_{\alpha}^{n}/n!</math> for all <math>\alpha\in \Delta</math> and <math>n\in \mathbb{Z}_{\geq 0}</math>.
* it is an integral form for $U(\mathfrak{g})$
+
* it is an integral form for <math>U(\mathfrak{g})</math>
 
* can we describe its integral basis?
 
* can we describe its integral basis?
  
 
===basis===
 
===basis===
* let $\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}$
+
* let <math>\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}</math> be an ordered set of positive roots
* for $Q=(q_1,\cdots, q_N)$ with $q_i\in \mathbb{Z}_{\geq 0}$, put
+
* for <math>Q=(q_1,\cdots, q_N)</math> with <math>q_i\in \mathbb{Z}_{\geq 0}</math>, put
$$
+
:<math>
 
e_{Q}=\prod_{i=1}^N X_{\alpha_i}^{(q_i)}
 
e_{Q}=\prod_{i=1}^N X_{\alpha_i}^{(q_i)}
$$
+
</math>
* for $S=(s_1,\cdots, s_N)$ with $q_i\in \mathbb{Z}_{\geq 0}$, put
+
* for <math>S=(s_1,\cdots, s_N)</math> with <math>q_i\in \mathbb{Z}_{\geq 0}</math>, put
$$
+
:<math>
 
f_{S}=\prod_{i=1}^N X_{-\alpha_i}^{(s_i)}
 
f_{S}=\prod_{i=1}^N X_{-\alpha_i}^{(s_i)}
$$
+
</math>
* for $x\in \mathfrak{g}$ and $s\in \mathbb{Z}_{\geq 0}$, put
+
* for <math>x\in \mathfrak{g}</math> and <math>s\in \mathbb{Z}_{\geq 0}</math>, put
$$
+
:<math>
 
\binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g})
 
\binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g})
$$
+
</math>
* let $l$ be the rank of $\mathfrak{g}$ for each $l$-tuple $P=(p_1,\cdots, p_l)$, define
+
* let <math>l</math> be the rank of <math>\mathfrak{g}</math> for each <math>l</math>-tuple <math>P=(p_1,\cdots, p_l)</math>, define
$$
+
:<math>
 
h_{P}=\prod_{i=1}^{l}\binom{H_{\alpha_i}}{p_i}
 
h_{P}=\prod_{i=1}^{l}\binom{H_{\alpha_i}}{p_i}
$$
+
</math>
 
;thm (Kostant 1966)
 
;thm (Kostant 1966)
 
The elements
 
The elements
$$
+
:<math>
 
\{f_{Q}h_Pe_{S}|Q\in\mathbb{Z}_{\geq 0}^{N},P\in\mathbb{Z}_{\geq 0}^{l},S\in\mathbb{Z}_{\geq 0}^{N}\}
 
\{f_{Q}h_Pe_{S}|Q\in\mathbb{Z}_{\geq 0}^{N},P\in\mathbb{Z}_{\geq 0}^{l},S\in\mathbb{Z}_{\geq 0}^{N}\}
$$
+
</math>
form an integral basis for $U(\mathfrak{g})_{\mathbb{Z}}$.
+
form an integral basis for <math>U(\mathfrak{g})_{\mathbb{Z}}</math>.
 
+
* See Humphreys chapter 26 for a proof
;proof
 
See '''[H]''' chapter 26.
 
  
 
===example===
 
===example===
* for $\mathfrak{g}=\mathfrak{sl}_2$,
+
* for <math>\mathfrak{g}=\mathfrak{sl}_2</math>,
 
:<math>\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}</math>
 
:<math>\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}</math>
* let us compute $E^2F^2$
+
* let us compute <math>E^2F^2</math>
$$
+
:<math>
 
E^2F^2=2 H^2-8 FE-2 H+F^2E^2+4 FHE
 
E^2F^2=2 H^2-8 FE-2 H+F^2E^2+4 FHE
$$
+
</math>
 
* thus
 
* thus
$$
+
:<math>
 
E^{(2)}F^{(2)}=\frac{H^2}{2}-2FE-\frac{H}{2}+F^{(2)}E^{(2)}+FHE
 
E^{(2)}F^{(2)}=\frac{H^2}{2}-2FE-\frac{H}{2}+F^{(2)}E^{(2)}+FHE
$$
+
</math>
* so we cannot use $\frac{H^k}{k!}$ as elements of integral basis
+
* so we cannot use <math>\frac{H^k}{k!}</math> as elements of integral basis
* that's where $\binom{H}{2}=\frac{H^2}{2}-\frac{H}{2}$ comes from. In general, we have
+
* that's where <math>\binom{H}{2}=\frac{H^2}{2}-\frac{H}{2}</math> comes from. In general, we have
$$
+
:<math>
 
E^{(m)}F^{(n)}=\sum_{j=0}^k F^{(n-j)}\binom{H-m-n+2j}{j}E^{(m-j)}
 
E^{(m)}F^{(n)}=\sum_{j=0}^k F^{(n-j)}\binom{H-m-n+2j}{j}E^{(m-j)}
$$
+
</math>
where $k=\min(m,n)$
+
where <math>k=\min(m,n)</math>
 
;exercise
 
;exercise
Let $j,k\in\mathbb{Z}_{\geq 0}$. The polynomial $\binom{x-j}{k}$ can be written as a $\mathbb{Z}$-linear combination of $\binom{x}{i}$'s.
+
Let <math>j,k\in\mathbb{Z}_{\geq 0}</math>. The polynomial <math>\binom{x-j}{k}</math> can be written as a <math>\mathbb{Z}</math>-linear combination of <math>\binom{x}{i}</math>'s.
  
 
===properties===
 
===properties===
* <math>\exp(tE)</math> and <math>\exp(tF)</math> exist in $U(\mathfrak{g})_{\mathbb{Z}}[[t]]$
+
* <math>\exp(tE)</math> and <math>\exp(tF)</math> exist in <math>U(\mathfrak{g})_{\mathbb{Z}}[[t]]</math>
 
* a nice property of this integral form is  
 
* a nice property of this integral form is  
$$
+
:<math>
 
\Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}.
 
\Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}.
$$
+
</math>
where $Z_{\alpha}=f_{Q}h_Pe_{S}$, $\alpha=(Q,P,S)\in\mathbb{Z}_{\geq 0}^{N+l+N}$ and $\Delta : U(\mathfrak{g})\to U(\mathfrak{g})$ is the coproduct defined by
+
where <math>Z_{\alpha}=f_{Q}h_Pe_{S}</math>, <math>\alpha=(Q,P,S)\in\mathbb{Z}_{\geq 0}^{N+l+N}</math> and <math>\Delta : U(\mathfrak{g})\to U(\mathfrak{g})</math> is the coproduct defined by
$$
+
:<math>
 
\Delta(x)=x\otimes 1+1\otimes x
 
\Delta(x)=x\otimes 1+1\otimes x
$$
+
</math>
for $x\in \mathfrak{g}$
+
for <math>x\in \mathfrak{g}</math>
* partial ordering on $\mathbb{Z}_{\geq 0}^{N+l+N}$
+
* partial ordering on <math>\mathbb{Z}_{\geq 0}^{N+l+N}</math>
  
 
==remarks on Chevalley groups==
 
==remarks on Chevalley groups==
 
;def
 
;def
An ''admissible'' integral form of a $\mathfrak{g}$-module $V$ is an integral form $M$ such that $U(\mathfrak{g})_{\mathbb{Z}}\cdot M\subseteq M$
+
An ''admissible'' integral form of a <math>\mathfrak{g}</math>-module <math>V</math> is an integral form <math>M</math> such that <math>U(\mathfrak{g})_{\mathbb{Z}}\cdot M\subseteq M</math>
 
;prop
 
;prop
Let $V$ be a finite dimensional $\mathfrak{g}$-module. Then $V$ has an admissible integral form. If $V$ is irreducible and $v_0$ is a highest weight vector, then $U(\mathfrak{g})_{\mathbb{Z}}.v_0$ is an admissible integral form of $V$.
+
Let <math>V</math> be a finite dimensional <math>\mathfrak{g}</math>-module. Then <math>V</math> has an admissible integral form. If <math>V</math> is irreducible and <math>v_0</math> is a highest weight vector, then <math>U(\mathfrak{g})_{\mathbb{Z}}.v_0</math> is an admissible integral form of <math>V</math>.
  
* Let $V$ a faithful representation of $\mathfrak{g}$ and $M$ an admissible integral form
+
* Let <math>(\rho,V)</math> a faithful representation of <math>\mathfrak{g}</math> and <math>M</math> an admissible integral form
* Choose an integral basis $\{m_1,\cdots, m_d\}$of $M$. Then $e_{\alpha}(t):=\exp \left(t\rho(X_{\alpha})\right)\in GL_{d}(\mathbb{Z}[t])$
+
* Choose an integral basis <math>\{m_1,\cdots, m_d\}</math>of <math>M</math>. Then <math>e_{\alpha}(t):=\exp \left(t\rho(X_{\alpha})\right)\in GL_{d}(\mathbb{Z}[t])</math>
* now let $k$ arbitrary field and $M^k=k\otimes_{\mathbb{Z}}M$ which is a vector space over $k$
+
* now let <math>k</math> arbitrary field and <math>M^k=k\otimes_{\mathbb{Z}}M</math>, a vector space over <math>k</math>
 
;def
 
;def
The Chevalley group $G_{V,k}$ is the subgroup of $GL(M^k)$ generated by all $e_{\alpha}(u),\, \alpha\in \Delta, u\in k$ regarded as a $k$-linear transformation of $M^k$
+
The ''Chevalley group'' <math>G_{V,k}</math> is the subgroup of <math>GL(M^k)</math> generated by all <math>e_{\alpha}(u),\, \alpha\in \Delta, u\in k</math> regarded as a <math>k</math>-linear transformation of <math>M^k</math>
* it actually depends on $k$ and the lattice of weights $\Gamma_{V}$ of $\mathfrak{g}$-module $V$
+
* it only depends on <math>k</math> and the lattice of weights <math>\Gamma_{V}</math> of <math>\mathfrak{g}</math>-module <math>V</math> (not on <math>M</math>)
* When $\Gamma_V=Q$, Q the root lattice, we call it an adjoint Chevalley group
+
* When <math>\Gamma_V=Q</math>, <math>Q</math> the root lattice, we call it an adjoint Chevalley group
 
;thm (Chevalley-Dickson theorem)
 
;thm (Chevalley-Dickson theorem)
Let $G$ be an adjoint Chevalley group. If $|k|=2$, suppose $\Delta$ is not of type $A_1,B_2$ or $G_2$. If $|k|=3$, suppose that $\Delta$ is not of type $A_1$. Then $G$ is a simple group.
+
Let <math>G</math> be an adjoint Chevalley group. If <math>|k|=2</math>, suppose <math>\Delta</math> is not of type <math>A_1,B_2</math> or <math>G_2</math>. If <math>|k|=3</math>, suppose that <math>\Delta</math> is not of type <math>A_1</math>. Then <math>G</math> is a simple group.
 
+
* See (Curtis, 'Chevalley groups and related topics' thm 6.11) for a proof.
See (Curtis, 'Chevalley groups and related topics' thm 6.11) for a proof.
+
* [[Finite reductive groups and groups of Lie type]]
 
 
==refs==
 
* '''[H]''' J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, (1972).
 
 
 
 
 
==related items==
 
* [[Chevalley integral form]]
 
  
[[분류:talks]]
 
 
[[분류:talks and lecture notes]]
 
[[분류:talks and lecture notes]]
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 20:04 기준 최신판

introduction

  • linear algebra : all bases are equal (half true. diagonalization)
  • actually 'All bases are equal, but some bases are more equal than others'
  • usually good bases : rich source of mathematics
  • what are good bases?


integral forms

  • Chevalley 1955, integral forms for finite-dimensional simple Lie algebras => construction of Chevalley groups (Chevalley integral form)
  • Kostant 1966, integral forms for the UEAs of simple Lie algebras (see The fake monster formal group by Borcherds for more)
  • \(A\) : algebra (or vector space) over \(\mathbb{C}\) (for any field \(\mathbb{F}\) of characteristic 0)
def

An integral form (or a \(\mathbb{Z}\)-form) \(A_\mathbb{Z}\) of \(A\) to be a \(\mathbb{Z}\)-algebra (\(\mathbb{Z}\)-module) such that \(\mathbb{C}\otimes_\mathbb{Z}A_\mathbb{Z}=A\).

An integral basis for \(A\) is a \(\mathbb{Z}\)-basis for \(A_\mathbb{Z}\).

review of basics on \(\mathfrak{sl}_2\)

Lie algebra \(\mathfrak{sl}(2)\)

  • \(\mathfrak{g}=\mathbb{C}\langle E,F,H \rangle\)
  • commutator

\[ [E,F]=H \\ [H,E]=2E \\ [H,F]=-2F \]

  • \(\mathfrak{g}_{\mathbb{Z}}=\mathbb{\mathbb{Z}}\langle E,F,H \rangle\) is an integral form (\(\mathfrak{g}_{\mathbb{Z}}\) is a Lie algebra over \(\mathbb{Z}\))

UEA

  • universal enveloping algebra \(U(\mathfrak{g})\) PBW basis

\[\{F^kH^lE^m|k,l,m\geq 0\}\]

  • Hopf algebra with coproduct \(\Delta : U(\mathfrak{g})\to U(\mathfrak{g})\) defined by \(\Delta(x)=x\otimes 1+1\otimes x\) for \(x\in \mathfrak{g}\)
  • integral form and integral basis ? answer later

finite dimensional representations

  • \(V\) : irreducible finite dimensional module
  • \(V=\oplus_{\mu\in\mathbb{C}}V_{\mu}\), \(V_{\mu}=\{v\in V|Hv=\mu v\}\)
  • there exists \(v_0\neq 0\) such that

\[Ev_0=0\] \[Hv_0=\lambda v_0\]

  • let \(F^{(j)}:=\frac{F^j}{j!}\), \(E^{(j)}:=\frac{E^j}{j!}\)
  • define \(v_j:=F^{(j)}v_0, j \in\mathbb{Z}_{\geq 0}\), we have

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j+1)v_{j+1}\] \[E v_j=(\lambda -j+1)v_{j-1}\]

  • as \(V\) is finite dimensional, there exists \(l\in \in\mathbb{Z}_{\geq 0}\) such that \(v_m\neq 0\) and \(v_{m+1}=0\)
  • then \(Ev_{m+1}=(\lambda-m)v_{m}=0\) and so \(\lambda-m=0\). So \(\lambda \in\mathbb{Z}_{\geq 0}\)
  • Let \(V_{\mathbb{Z}}\) be the \(\mathbb{Z}\)-span of \(\{v_j|j\geq 0\}\)
  • as \(V\) is irreducible, \(V=\mathbb{C}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}\)
  • so \(V_{\mathbb{Z}}\) is an integral form for \(V\) with integral basis \(\{v_0,\cdots, v_m\}\)
Question.

where do \(F^{(j)}\) come from?

prop

\(V_{\mathbb{Z}}\) is stable under the action of \(F^{(j)}\) and \(E^{(j)}\) and thus stable also under the action of \(\exp (tE)\) and \(\exp (tF)\) (matrices with coefficients in \(\mathbb{Z}[t]\), key fact to define the Chevalley groups)

basis of \(\mathfrak{g}\) and structure constants

basis

  • simple Lie algebra \(\mathfrak{g}\) over \(\mathbb{C}\), we have a non-deg invariant bilinear form \((\cdot,\cdot)\).
  • fix a Cartan subalgebra \(\mathfrak{h}\)
  • \(\Delta\) : root system
  • \(\Pi\) : fundamental system
  • Cartan decomposition

\[ \mathfrak{g}=\mathfrak{h}\oplus \left(\oplus_{\alpha\in \Delta} \mathfrak{g}_{\alpha}\right) \]

  • fix \(H_{\alpha}\in \mathfrak{h}\) uniquely for each \(\alpha\in \Delta\) by

\[ \beta(H_{\alpha})=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}\,\quad \beta\in \mathfrak{h}^{*} \]

exercise

\(H_{\alpha}\) can be written as a \(\mathbb{Z}\)-linear combination of \(H_{\alpha_i}, \alpha_i\in \Pi\).

  • we can choose \(x_{\alpha}\in \mathfrak{g}_{\alpha}\) so that

\[[x_{\alpha},x_{-\alpha}]=H_{\alpha}\]

  • The elements \(\{H_{\alpha_i} : \alpha_i\in \Pi\}\) together with elements \(x_{\alpha}\in \mathfrak{g}_{\alpha}\) (\(\alpha\in \Delta\)) form a basis of \(\mathfrak{g}\)

structure constants

  • multiplication in \(\mathfrak{g}\)

\[ [h,x_{\alpha}]=\alpha(h)x_{\alpha}\\ [x_{\alpha},x_{-\alpha}]=H_{\alpha}\\ [x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta} \]

  • structure constants \(n_{\alpha,\beta}\)
  • \(n_{\alpha,\beta}\neq 0\) only if \(\alpha+\beta\in \Delta\)
  • \(n_{\alpha,\beta}\) is not fixed by the above condition. how much freedom do we have?
  • The structure constants \(n_{\alpha,\beta}\) for extraspecial pairs \((\alpha,\beta)\) can be chosen as arbitrary non-zero elements of \(\mathbb{C}\), by appropriate choice of the elements \(x_{\alpha}\).
  • All the structure constants \(n_{\alpha,\beta}\) are determined by the structure constants for extraspecial pairs.
  • see Lie Algebras of Finite and Affine Type by Carter for more

Chevalley

  • a synthesis between the theory of Lie groups and the theory of finite groups


observation

  • if we make another choice \(x_{\alpha}'=u_{\alpha}x_{\alpha}\) with \(u_{\alpha}u_{-\alpha}=1\), then structure constants satisfy the following property

\[ n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta} \]

lemma

The number \(n_{\alpha,\beta}n_{-\alpha,-\beta}\) is given by \(-(p+1)^2\) where \(p\) is the largest integer \(\geq 0\) such that \(\beta-p\alpha\in \Delta\). (\(\alpha\) string through \(\beta\))

remark

it is the minimum \(p\in \mathbb{Z}_{\geq 0}\) such that \[ \left(\text{ad} x_{-\alpha}\right)^{p}\left(x_{\beta}\right)=0 \]

lemma

It is possible to choose basis elements \(x_{\alpha}'\in \mathfrak{g}_{\alpha}\) such that \([x_{\alpha}',x_{-\alpha}']=H_{\alpha}\), and \(n_{-\alpha,-\beta}=-n_{\alpha,\beta}\) for all \(\alpha\) and \(\beta\). For this choice of \(x_{\alpha}'\), we have \(n_{\alpha,\beta}=\pm (p+1)\)

Hint : Use the Chevalley involution \(\sigma :\mathfrak{g}\to \mathfrak{g}\). It is an involution with \(\sigma(h)=-h\) for any \(h\in \mathfrak{h}\) and \(\sigma(x_{\alpha})=x_{-\alpha}\).

Chevalley basis

thm (Chevalley 1955)

The elements \(\{H_{\alpha_i} : \alpha_i\in \Pi\}\) together with elements \(X_{\alpha}\in \mathfrak{g}_{\alpha}\) (\(\alpha\in \Delta\)) chosen to satisfy \([X_{\alpha},X_{-\alpha}]=H_{\alpha}\) and \([X_{\alpha},X_{\beta}]=\pm (p+1) X_{\alpha+\beta}\) (if \(\alpha+\beta\in \Delta)\) form a basis for a \(\mathbb{Z}\)-form \(\mathfrak{g}_{\mathbb{Z}}\) of \(\mathfrak{g}\).

Kostant

integral form

  • Let \(\{X_{\alpha}\}\) and \(\{H_{\alpha_i}\}\) be a Chevalley basis for \(\mathfrak{g}\)
  • Let \(U(\mathfrak{g})_{\mathbb{Z}}\) be the \(\mathbb{Z}\)-subalgebra of \(U(\mathfrak{g})\) generated by \(X_{\alpha}^{(n)}=X_{\alpha}^{n}/n!\) for all \(\alpha\in \Delta\) and \(n\in \mathbb{Z}_{\geq 0}\).
  • it is an integral form for \(U(\mathfrak{g})\)
  • can we describe its integral basis?

basis

  • let \(\Delta^{+}=\{\alpha_1,\cdots, \alpha_N\}\) be an ordered set of positive roots
  • for \(Q=(q_1,\cdots, q_N)\) with \(q_i\in \mathbb{Z}_{\geq 0}\), put

\[ e_{Q}=\prod_{i=1}^N X_{\alpha_i}^{(q_i)} \]

  • for \(S=(s_1,\cdots, s_N)\) with \(q_i\in \mathbb{Z}_{\geq 0}\), put

\[ f_{S}=\prod_{i=1}^N X_{-\alpha_i}^{(s_i)} \]

  • for \(x\in \mathfrak{g}\) and \(s\in \mathbb{Z}_{\geq 0}\), put

\[ \binom{x}{s}=\frac{x(x-1)\cdots (x-s+1)}{s!}\in U(\mathfrak{g}) \]

  • let \(l\) be the rank of \(\mathfrak{g}\) for each \(l\)-tuple \(P=(p_1,\cdots, p_l)\), define

\[ h_{P}=\prod_{i=1}^{l}\binom{H_{\alpha_i}}{p_i} \]

thm (Kostant 1966)

The elements \[ \{f_{Q}h_Pe_{S}|Q\in\mathbb{Z}_{\geq 0}^{N},P\in\mathbb{Z}_{\geq 0}^{l},S\in\mathbb{Z}_{\geq 0}^{N}\} \] form an integral basis for \(U(\mathfrak{g})_{\mathbb{Z}}\).

  • See Humphreys chapter 26 for a proof

example

  • for \(\mathfrak{g}=\mathfrak{sl}_2\),

\[\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}\]

  • let us compute \(E^2F^2\)

\[ E^2F^2=2 H^2-8 FE-2 H+F^2E^2+4 FHE \]

  • thus

\[ E^{(2)}F^{(2)}=\frac{H^2}{2}-2FE-\frac{H}{2}+F^{(2)}E^{(2)}+FHE \]

  • so we cannot use \(\frac{H^k}{k!}\) as elements of integral basis
  • that's where \(\binom{H}{2}=\frac{H^2}{2}-\frac{H}{2}\) comes from. In general, we have

\[ E^{(m)}F^{(n)}=\sum_{j=0}^k F^{(n-j)}\binom{H-m-n+2j}{j}E^{(m-j)} \] where \(k=\min(m,n)\)

exercise

Let \(j,k\in\mathbb{Z}_{\geq 0}\). The polynomial \(\binom{x-j}{k}\) can be written as a \(\mathbb{Z}\)-linear combination of \(\binom{x}{i}\)'s.

properties

  • \(\exp(tE)\) and \(\exp(tF)\) exist in \(U(\mathfrak{g})_{\mathbb{Z}}[[t]]\)
  • a nice property of this integral form is

\[ \Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}. \] where \(Z_{\alpha}=f_{Q}h_Pe_{S}\), \(\alpha=(Q,P,S)\in\mathbb{Z}_{\geq 0}^{N+l+N}\) and \(\Delta : U(\mathfrak{g})\to U(\mathfrak{g})\) is the coproduct defined by \[ \Delta(x)=x\otimes 1+1\otimes x \] for \(x\in \mathfrak{g}\)

  • partial ordering on \(\mathbb{Z}_{\geq 0}^{N+l+N}\)

remarks on Chevalley groups

def

An admissible integral form of a \(\mathfrak{g}\)-module \(V\) is an integral form \(M\) such that \(U(\mathfrak{g})_{\mathbb{Z}}\cdot M\subseteq M\)

prop

Let \(V\) be a finite dimensional \(\mathfrak{g}\)-module. Then \(V\) has an admissible integral form. If \(V\) is irreducible and \(v_0\) is a highest weight vector, then \(U(\mathfrak{g})_{\mathbb{Z}}.v_0\) is an admissible integral form of \(V\).

  • Let \((\rho,V)\) a faithful representation of \(\mathfrak{g}\) and \(M\) an admissible integral form
  • Choose an integral basis \(\{m_1,\cdots, m_d\}\)of \(M\). Then \(e_{\alpha}(t):=\exp \left(t\rho(X_{\alpha})\right)\in GL_{d}(\mathbb{Z}[t])\)
  • now let \(k\) arbitrary field and \(M^k=k\otimes_{\mathbb{Z}}M\), a vector space over \(k\)
def

The Chevalley group \(G_{V,k}\) is the subgroup of \(GL(M^k)\) generated by all \(e_{\alpha}(u),\, \alpha\in \Delta, u\in k\) regarded as a \(k\)-linear transformation of \(M^k\)

  • it only depends on \(k\) and the lattice of weights \(\Gamma_{V}\) of \(\mathfrak{g}\)-module \(V\) (not on \(M\))
  • When \(\Gamma_V=Q\), \(Q\) the root lattice, we call it an adjoint Chevalley group
thm (Chevalley-Dickson theorem)

Let \(G\) be an adjoint Chevalley group. If \(|k|=2\), suppose \(\Delta\) is not of type \(A_1,B_2\) or \(G_2\). If \(|k|=3\), suppose that \(\Delta\) is not of type \(A_1\). Then \(G\) is a simple group.