Talk on Chevalley's integral forms

수학노트
imported>Pythagoras0님의 2014년 3월 30일 (일) 23:11 판 (→‎remarks on Chevalley groups)
둘러보기로 가기 검색하러 가기

introduction

motivating questions

  • why do we want integral forms?
  • what are good bases?
    • Kostant found that the good integral forms are the ones with a structural base and showed that the universal enveloping algebras of finite dimensional semisimple Lie algebras have a structural base
    • The fake monster formal group by Borcherds
  • $\mathfrak{g}_{\mathbb{Z}}$ is a Lie algebra over $\mathbb{Z}$
  • how can we check the consistency of Chevalley basis?


highest weight representations of $\mathfrak{sl}_2$

  • \(V\) :유한차원인 기약표현
  • \(V=\oplus_{\lambda\in\mathbb{C}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)
  • \(\lambda\in \mathbb{C}\) 에 대하여, 다음의 조건을 만족하는 highest weight vector \(v_0\) 를 정의

\[Ev_0=0\] \[Hv_0=\lambda v_0\]

  • \(v_j:=\frac{F^j}{j!}v_0\) 로 정의하면, 다음 관계가 만족된다

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j+1)v_{j+1}\] \[E v_j=(\lambda -j+1)v_{j-1}\]

  • \(\{v_j|j\geq 0\}\) 가 생성하는 벡터공간이 유한차원인 $\mathfrak{g}$-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다


Serre's relations

  • 틀:수학노트 에서 가져옴
  • l : 리대수 \(\mathfrak{g}\)의 rank
  • \((a_{ij})\) : 카르탄 행렬
  • 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
  • 세르 관계식
    • \(\left[h_i,h_j\right]=0\)
    • \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
    • \(\left[h_i,e_j\right]=a_{i,j}e_j\)
    • \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
    • \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
  • ad 는 adjoint 의 약자
    • \(\left(\text{ad} x\right){}^{3}\left(y\right)=[x, [x, [x, y]]]\)
    • \(\left(\text{ad} x\right){}^{4}\left(y\right)=[x, [x, [x, [x, y]]]]\)


sl(3)의 예

  • 카르탄 행렬\[\left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right)\]
  • \(i\neq j\) 일 때\[\left(\text{ad} e_i\right){}^{2}\left(e_j\right)=[e_i, [e_i,e_j]]=0\]\[\left(\text{ad} f_i\right){}^{2}\left(f_j\right)=[f_i, [f_i,f_j]]=0\]
  • $e_1,e_2,h_1,h_2,f_1,f_2, \left[e_1,e_2\right], \left[f_1,f_2\right]$는 리대수의 기저가 된다


UEA 에서의 관계식

  • 카르탄행렬이 \((a_{ij})\) 로 주어지는 리대수 \(\mathfrak{g}\)의 UEA \(U(\mathfrak{g})\) 에서 다음의 두 식

\[\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0, \quad i\neq j\] \[\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0, \quad i\neq j\]

  • 다음과 같이 표현할 수 있다\[\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}e_{i}^{1-a_{i,j}-k}e_{j}e_{i}^k=0\]\[\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}f_{i}^{1-a_{i,j}-k}f_{j}f_{i}^k=0\]
  • 풀어 쓰면 다음과 같은 형태가 된다\[x\otimes x\otimes y-2 x\otimes y\otimes x+y\otimes x\otimes x\]\[x\otimes x\otimes x\otimes y-3 x\otimes x\otimes y\otimes x+3 x\otimes y\otimes x\otimes x-y\otimes x\otimes x\otimes x\]\[x\otimes x\otimes x\otimes x\otimes y-4 x\otimes x\otimes x\otimes y\otimes x+6 x\otimes x\otimes y\otimes x\otimes x-4 x\otimes y\otimes x\otimes x\otimes x+y\otimes x\otimes x\otimes x\otimes x\]


integral forms

  • Let $\mathbb{Z}$ denote the integers. If $A$ is an algebra, over a field $\mathbb{F}$ of characteristic 0, define an integral form $A_\mathbb{Z}$ of $A$ to be a $\mathbb{Z}$-algebra such that $A_\mathbb{Z}\otimes_\mathbb{Z}\mathbb{F}=A$.
  • An integral basis for $A$ is a $\mathbb{Z}$-basis for $A_\mathbb{Z}$.
  • the theory integral forms for finite-dimensional simple Lie algebras was first studied by Chevalley in 1955. His work led to the construction of Chevalley groups
  • Kostant found an integral form for the UEA of simple Lie algebra $\mathfrak{g}$



Chevalley

  • a synthesis between the theory of Lie groups and the theory of finite groups

리대수 \(\mathfrak{sl}(2)\)

  • \(L=\langle E,F,H \rangle\)
  • commutator

\[ [E,F]=H \\ [H,E]=2E \\ [H,F]=-2F \]

observation

  • from the root system, we can fix $h_{\alpha}$ uniquely for each $\alpha\in \Delta$
  • we can choose $x_{\alpha}$ so that $[x_{\alpha},x_{-\alpha}]=h_{\alpha}$
  • the structure constants $n_{\alpha,\beta}$ where

$$[x_{\alpha},x_{\beta}]=n_{\alpha,\beta}x_{\alpha+\beta}$$ is not fixed by the above condition

  • but if we make another choice $x_{\alpha}'=u_{\alpha}x_{\alpha}$ with $u_{\alpha}u_{-\alpha}=1$, then structure constants satisfy the following property

$$ n_{\alpha,\beta}'n_{-\alpha,-\beta}'=n_{\alpha,\beta}n_{-\alpha,-\beta} $$

lemma

The number $n_{\alpha,\beta}n_{-\alpha,-\beta}$ is given by $-(p+1)^2$ where $p$ is the largest integer $\geq 0$ such that $\beta-p\alpha\in \Delta$


general case

thm

Chevalley bases exist

  • Q. why is it surprising or non-trivial?
  • tentative answer : can we check the Jacobi identity?
  • for example, taking $2x_{\alpha}$ instead of $x_{\alpha}$ still gives integral Lie bracket.


procedure

Lemma 7.3

The structure constants $N_{\alpha,\beta}$ for extraspecial pairs $(\alpha,\beta)$ can be chosen as arbitrary non-zero elements of $\mathbb{C}$ , by appropriate choice of the elements $e_{\alpha}$.


Proposition 7.4

All the structure constants $N_{\alpha,\beta}$ are determined by the structure constants for extraspecial pairs.



Kostant

  • universal enveloping algebra의 PBW 기저

\[\{F^kH^lE^m|k,l,m\geq 0\}\]

thm

For each choice of $r_i,s_{\alpha}\geq 0$, form the product in the given order of the elements $$ \binom{h_i}{r_i} $$ and the elements $$ \frac{x_{\alpha}^{s_{\alpha}}}{s_{\alpha}!} $$ for $i=1,\cdots, \ell$ and $\alpha\in \Phi$. Then the resulting collection if a basis for $U_{\mathbb{Z}}$ as a free $\mathbb{Z}$-module

  • See [H] chapter 26?
  • a nice property of this integral form is

$$ \Delta(Z_{\alpha}) = \sum_{0\leq\beta\leq\alpha}Z_{\beta} \otimes Z_{\alpha−\beta}. $$

  • for example, one can take

\[\{\frac{F^k}{k!}\binom{H}{l}\frac{E^m}{m!}|k,l,m\geq 0\}\]

  • \(\exp(tE)\) and \(\exp(tF)\) exist
  • \(\exp(tH)\) does not exist instead \((1+t)^{H}=1+\binom{H}{1}t+\binom{H^2}{2!}t^2+\cdots\) exists

example

  • let us compute $e^2f^2$

$$ e^2f^2=2 h^2-8 fe-2 h+f^2e^2+4 fhe $$

  • thus

$$ e^{(2)}f^{(2)}=\frac{h^2}{2}-2fe-\frac{h}{2}+f^{(2)}e^{(2)}+fhe $$

  • so we cannot use $\frac{h^k}{k!}$ as elements of integral basis
  • that's where $\binom{h}{2}=\frac{h^2}{2}-\frac{h}{2}$ comes from


remarks on Chevalley groups

  • see theorem (6.11) of Curtis, 'Chevalley groups and related topics'
  • For arbitrary field $k$ and a faithful representation $V$ of $\mathfrak{g}$, we can define the Chevalley group $G_{V,k}$.
  • it actually depends on $k$ and the lattice of weights $\Gamma_{V}$ of $\mathfrak{g}$-module $V$

refs

  • [H] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, (1972).


related items