"3차원 공간의 회전과 SO(3)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
*  
+
 
 +
 
 +
 
  
 
 
 
 
  
<math>\left( \begin{array}{ccc}  \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\  (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\  -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math>
+
<h5>로드리게스 공식</h5>
 +
 
 +
*  3차원에서 벡터 <math>(\omega _x,\omega _y,\omega _z)</math> 를 축으로 하여 <math>\theta</math> 만큼 회전시키는 변환의 행렬표현<br><math>\left( \begin{array}{ccc}  \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\  (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\  -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math><br>
 +
*  로드리게스 공식 [http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html http:/][http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html /www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html]<br>
 +
 
 +
 
  
 
 
 
 
28번째 줄: 35번째 줄:
 
<h5>메모</h5>
 
<h5>메모</h5>
  
* 로드리게스 공식 [http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html http:/][http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html /www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html]
 
 
* SO(3) 의 표현론
 
* SO(3) 의 표현론
* 로렌츠
+
* 로렌츠 군의 표현론
 
* 파울리 행렬, 디랙 행렬
 
* 파울리 행렬, 디랙 행렬
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=

2011년 12월 3일 (토) 05:11 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

 

로드리게스 공식
  • 3차원에서 벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
    \(\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\)
  • 로드리게스 공식 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서