"3차원 공간의 회전과 SO(3)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
− | + | ||
+ | |||
+ | |||
− | <math>\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math> | + | <h5>로드리게스 공식</h5> |
+ | |||
+ | * 3차원에서 벡터 <math>(\omega _x,\omega _y,\omega _z)</math> 를 축으로 하여 <math>\theta</math> 만큼 회전시키는 변환의 행렬표현<br><math>\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math><br> | ||
+ | * 로드리게스 공식 [http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html http:/][http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html /www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html]<br> | ||
+ | |||
+ | |||
28번째 줄: | 35번째 줄: | ||
<h5>메모</h5> | <h5>메모</h5> | ||
− | |||
* SO(3) 의 표현론 | * SO(3) 의 표현론 | ||
− | * 로렌츠 | + | * 로렌츠 군의 표현론 |
* 파울리 행렬, 디랙 행렬 | * 파울리 행렬, 디랙 행렬 | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= |
2011년 12월 3일 (토) 05:11 판
이 항목의 수학노트 원문주소
개요
로드리게스 공식
- 3차원에서 벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
\(\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\) - 로드리게스 공식 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html
역사
메모
- SO(3) 의 표현론
- 로렌츠 군의 표현론
- 파울리 행렬, 디랙 행렬
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://ko.wikipedia.org/wiki/오일러_각도
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문