"역삼각함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
*  사인/아크사인함수 덧셈정리의 적분표현<br><math>\sin \left(x+y\right)=\sin x \cos y + \cos x \sin y\</math><br><math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math><br><math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
+
*  사인/아크사인함수 덧셈정리의 적분표현<br><math>\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2</math><br><math>\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})</math><br><math>\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx </math><br>
 <br> 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현<br><math>\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}</math><br><math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math><br><math>\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math><br>  <br>
+
*  탄젠트/아크탄젠트 함수 덧셈정리의 적분표현<br><math>\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}</math><br><math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math><br><math>\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math><br>  <br>
  
 
+
<math>x>0</math> 일 때,
  
 
+
<math>\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}</math>
 
 
<math>\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}</math>
 
 
 
<math>\int_0^x \frac{dx}{1+x^2}  + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}</math>
 
 
 
 
 
 
 
 
 
  
 
 
 
 

2012년 5월 13일 (일) 14:10 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 사인/아크사인함수 덧셈정리의 적분표현
    \(\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2\)
    \(\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})\)
    \(\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx \)
  • 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현
    \(\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\)
    \(\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\)
    \(\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}\)
     

\(x>0\) 일 때,

\(\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}\)

 

\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)

\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\)

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그