"가우스의 보조정리(Gauss's lemma)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[가우스의 보조정리(Gauss's lemma)]]
  
 
 
 
 
55번째 줄: 57번째 줄:
  
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
 +
 +
* [[최대정수함수 (가우스함수)]]
 +
 +
 
 +
 +
 
 +
 +
https://docs.google.com/leaf?id=0B8XXo8Tve1cxMDY4ODA5ZWMtYTdhNi00ZjAzLTgyN2ItYjMyMjUyMDJlZWFk&sort=name&layout=list&num=50
  
 
 
 
 

2012년 1월 9일 (월) 07:25 판

이 항목의 수학노트 원문주소

 

 

개요
  • 이차잉여의 이론에서 중요한 역할
  • 홀수인 소수 p에 대하여, \(a\in (\mathbb{Z}/p\mathbb{Z})^\times\)
    \(\left(\frac{a}{p}\right)=(-1)^n\) 이 성립한다
    여기서 n은 \(a, 2a, 3a, \dots, \frac{p-1}{2}a \in (\mathbb{Z}/p\mathbb{Z})^\times\) 의 값을 \(\{1,2,\cdots,p-1\}\) 에서 고려할때, p/2보다 큰 경우의 수

 

 

최대정수함수를 이용한 표현
  • 홀수인 소수 p에 대하여, \((a,2p)=1\) 일 때,
    \(\left(\frac{a}{p}\right)=(-1)^n\) 이고, 여기서 \(n=\sum_{j=1}^{(p-1)/2}[\frac{ja}{p}]\).

 

 

아이젠슈타인

\(\left(\frac{a}{p}\right)=\prod_{n=1}^{(p-1)/2}\frac{\sin{(2\pi an/p)}}{\sin{(2\pi n/p)}}\)

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

https://docs.google.com/leaf?id=0B8XXo8Tve1cxMDY4ODA5ZWMtYTdhNi00ZjAzLTgyN2ItYjMyMjUyMDJlZWFk&sort=name&layout=list&num=50

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서