"Rank 2 cluster algebra"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>introduction</h5> | ||
+ | * cluster algebra defined by a 2x2 matrix | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>cluster variables and exchange relations</h5> | ||
+ | |||
+ | Fix two positive integers b and c. | ||
+ | |||
+ | Let y_1 and y_2 be variable. Define a sequence {y_n}. | ||
+ | |||
+ | <math>y_{m-1}y_{m+1}=y_m^b+1</math> if m odd | ||
+ | |||
+ | <math>y_{m-1}y_{m+1}=y_m^c+1</math> if m even | ||
+ | |||
+ | We call this ''''exchange relation'''' | ||
+ | |||
+ | y_m's are called ''''cluster variable'''' | ||
+ | |||
+ | <math>\{y_i,y_{i+1}\}</math> "cluster" | ||
+ | |||
+ | Note : we can use the exchange relation any y_m in terms of arbitrary cluster {y_i,y_{i+1}} (rational expression) | ||
+ | |||
+ | |||
+ | |||
+ | <h5>example 1</h5> | ||
+ | |||
+ | Put b=c=1 | ||
+ | |||
+ | y_1,y_2,<math>y_3y_1=y_2+1</math>. so <math>y_3=\frac{y_2+1}{y_1}</math> | ||
+ | |||
+ | <math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}</math> | ||
+ | |||
+ | <math>y_3y_5=y_4+1</math> implies <math>y_5=\frac{y_4+1}{y_3}= \frac{y_1+1}{y_2}</math> we are getting Laurent polynomials | ||
+ | |||
+ | <math>y_4y_6=y_5</math> implies <math>y_1=1</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>example 2</h5> | ||
+ | |||
+ | Put b=1, c=3 | ||
+ | |||
+ | y_1,y_2,<math>y_3y_1=y_2^3+1</math>. so <math>y_3=\frac{y_2^3+1}{y_1}</math> | ||
+ | |||
+ | <math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}</math> | ||
+ | |||
+ | <math>y_3y_5=y_4^3+1</math> implies <math>y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}</math> we are getting Laurent polynomials | ||
+ | |||
+ | y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2} | ||
+ | |||
+ | y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3} | ||
+ | |||
+ | y_8=\frac{y_1+1}{y_2} | ||
+ | |||
+ | y_9=y_1 | ||
+ | |||
+ | y_{10}=y_2 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>matrix formulation</h5> | ||
+ | |||
+ | <math>B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}</math> | ||
+ | |||
+ | <math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | ||
+ | |||
+ | <math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>observations</h5> | ||
+ | |||
+ | (FZ) For any b,c, y_m is a Laurent polynomial. | ||
+ | |||
+ | Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have ) | ||
+ | |||
+ | In this example, | ||
+ | |||
+ | <math>bc\leq 3</math> iff the recurrence is periodic | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2011년 books and articles]] | ||
+ | * http://library.nu/search?q= | ||
+ | * http://library.nu/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2011년 1월 19일 (수) 11:57 판
introduction
- cluster algebra defined by a 2x2 matrix
cluster variables and exchange relations
Fix two positive integers b and c.
Let y_1 and y_2 be variable. Define a sequence {y_n}.
\(y_{m-1}y_{m+1}=y_m^b+1\) if m odd
\(y_{m-1}y_{m+1}=y_m^c+1\) if m even
We call this 'exchange relation'
y_m's are called 'cluster variable'
\(\{y_i,y_{i+1}\}\) "cluster"
Note : we can use the exchange relation any y_m in terms of arbitrary cluster {y_i,y_{i+1}} (rational expression)
example 1
Put b=c=1
y_1,y_2,\(y_3y_1=y_2+1\). so \(y_3=\frac{y_2+1}{y_1}\)
\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}\)
\(y_3y_5=y_4+1\) implies \(y_5=\frac{y_4+1}{y_3}= \frac{y_1+1}{y_2}\) we are getting Laurent polynomials
\(y_4y_6=y_5\) implies \(y_1=1\)
example 2
Put b=1, c=3
y_1,y_2,\(y_3y_1=y_2^3+1\). so \(y_3=\frac{y_2^3+1}{y_1}\)
\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}\)
\(y_3y_5=y_4^3+1\) implies \(y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}\) we are getting Laurent polynomials
y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2}
y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3}
y_8=\frac{y_1+1}{y_2}
y_9=y_1
y_{10}=y_2
matrix formulation
\(B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\)
\(\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)
\(\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)
observations
(FZ) For any b,c, y_m is a Laurent polynomial.
Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
In this example,
\(bc\leq 3\) iff the recurrence is periodic
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field