"Rank 2 cluster algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
33번째 줄: 33번째 줄:
 
Put b=c=1
 
Put b=c=1
  
y_1,y_2,<math>y_3y_1=y_2+1</math>. so <math>y_3=\frac{y_2+1}{y_1}</math>
+
y_1,y_2
 +
 
 +
<math>y_3y_1=y_2+1</math>. so <math>y_3=\frac{y_2+1}{y_1}</math>
  
 
<math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}</math>
 
<math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}</math>
49번째 줄: 51번째 줄:
 
Put b=1, c=3
 
Put b=1, c=3
  
y_1,y_2,<math>y_3y_1=y_2^3+1</math>. so <math>y_3=\frac{y_2^3+1}{y_1}</math>
+
y_1,y_2
 +
 
 +
<math>y_3y_1=y_2^3+1</math>. so <math>y_3=\frac{y_2^3+1}{y_1}</math>
  
 
<math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}</math>
 
<math>y_2y_4=y_3+1 </math>implies <math>y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}</math>
  
<math>y_3y_5=y_4^3+1</math> implies <math>y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}</math> we are getting Laurent polynomials 
+
<math>y_3y_5=y_4^3+1</math> implies <math>y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}</math>[http://www.wolframalpha.com/input/?i=%28%28x%2By%5E3%2B1%29%5E3%2B%28xy%29%5E3%29/%28x%5E2y%5E3%28y%5E3%2B1%29%29 ][http://www.wolframalpha.com/input/?i=%28%28x%2By%5E3%2B1%29%5E3%2B%28xy%29%5E3%29/%28x%5E2y%5E3%28y%5E3%2B1%29%29 http://www.wolframalpha.com/input/?i=((x%2By^3%2B1)^3%2B(xy)^3)/(x^2y^3(y^3%2B1))] 
 +
 
 +
Note that we are getting Laurent polynomials.
  
y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2}
+
<math>y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2}</math>
  
y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3}
+
<math>y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3}</math>
  
y_8=\frac{y_1+1}{y_2}
+
 
  
 
y_9=y_1
 
y_9=y_1

2011년 1월 19일 (수) 12:14 판

introduction
  • cluster algebra defined by a 2x2 matrix

 

 

 

cluster variables and exchange relations

Fix two positive integers b and c.

Let y_1 and y_2 be variable. Define a sequence {y_n}.

\(y_{m-1}y_{m+1}=y_m^b+1\) if m odd

\(y_{m-1}y_{m+1}=y_m^c+1\) if m even

We call this 'exchange relation'

y_m's are called 'cluster variable'

\(\{y_i,y_{i+1}\}\) "cluster"

Note : we can use the exchange relation any y_m in terms of arbitrary cluster {y_i,y_{i+1}} (rational expression)

 

example 1

Put b=c=1

y_1,y_2

\(y_3y_1=y_2+1\). so \(y_3=\frac{y_2+1}{y_1}\)

\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}\)

\(y_3y_5=y_4+1\) implies \(y_5=\frac{y_4+1}{y_3}= \frac{y_1+1}{y_2}\) we are getting Laurent polynomials

\(y_4y_6=y_5\) implies \(y_1=1\)

 

 

example 2

Put b=1, c=3

y_1,y_2

\(y_3y_1=y_2^3+1\). so \(y_3=\frac{y_2^3+1}{y_1}\)

\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2^3+1}{y_1y_2}\)

\(y_3y_5=y_4^3+1\) implies \(y_5=\frac{y_4^3+1}{y_3}= \frac{(y_1+1)^3+y_2^3(y_2^3+3y_1+2)}{y_1^2y_2^3}\)[1]http://www.wolframalpha.com/input/?i=((x%2By^3%2B1)^3%2B(xy)^3)/(x^2y^3(y^3%2B1)) 

Note that we are getting Laurent polynomials.

\(y_6=\frac{(y_1+1)^2+y_2^3}{y_1y_2^2}\)

\(y_7=\frac{(y_1+1)^3+y_2^3}{y_1y_2^3}\)

 

y_9=y_1

y_{10}=y_2

 

 

matrix formulation

\(B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\)

\(\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

\(\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

 

 

observations

(FZ) For any b,c, y_m is a Laurent polynomial.

Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )

In this example, 

\(bc\leq 3\) iff the recurrence is periodic

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links