"Rank 2 cluster algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
80번째 줄: 80번째 줄:
 
 
 
 
  
<h5>classification</h5>
+
<h5>cluster algebra associated to Cartan matrices</h5>
  
 
Finite type classification :
 
Finite type classification :
 
 
 
  
 
<math>A(b,c)</math> related to root systems of Cartan matrix
 
<math>A(b,c)</math> related to root systems of Cartan matrix
 
 
 
  
 
<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 
<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 
 
 
  
 
Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>
 
Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>
 
 
 
  
 
when <math>bc\leq 3</math>
 
when <math>bc\leq 3</math>
 
 
 
  
 
<math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number|coxeter number]]
 
<math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number|coxeter number]]
 
 
 
  
 
bc=1, h=2
 
bc=1, h=2
 
 
 
  
 
bc=2, h=4
 
bc=2, h=4
 
 
 
  
 
bc=3, h=6
 
bc=3, h=6
 
 
 
  
 
bc\geq 4, h=\infity
 
bc\geq 4, h=\infity
 
 
 
  
 
If bc\geq 4, all y_m distinct
 
If bc\geq 4, all y_m distinct
 
 
 
  
 
 
 
 
177번째 줄: 155번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082. <br>  <br>
+
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082. 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/

2011년 1월 28일 (금) 05:52 판

introduction
  • cluster algebra defined by a 2x2 matrix
  • Laurent phenomenon
  • Positivity conjecture
  • finite classification

 

 

cluster variables and exchange relations

Fix two positive integers b and c.

Let y_1 and y_2 be variable. Define a sequence {y_n}.

\(y_{m-1}y_{m+1}=y_m^b+1\) if m odd

\(y_{m-1}y_{m+1}=y_m^c+1\) if m even

We call this 'exchange relation'

\(y_m\)'s are called 'cluster variable'

\(\{y_i,y_{i+1}\}\) "cluster"
\(\{y_m^py_{m+1}^q\}\) "cluster monomials" (supported on a given cluster)

Note : we can use the exchange relation any y_m in terms of arbitrary cluster \(\{y_i,y_{i+1}\}\) (rational expression)

 

 

matrix formulation

\(B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\)

\(\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

\(\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

For \(k\in \{1,2,\cdots, n\}\),  \(x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}\)

\(x_1x_1'=x_2^c+1\) call x_1'=x_3

\(x_2x_2'=x_1^b+1\) call x_2'=x_4

 

\(\mu_k(B)\)

\(-b_{ij}\) if k=i or j

\(b_{ij}\) if \(b_{ik}b_{kj}\leq 0\)

 

\(b_{ij}+b_{ik}b_{kj}\) if \(b_{ik}, b_{kj}>0\)

\(b_{ij}-b_{ik}b_{kj}\) if \(b_{ik},{b_{kj}< 0\)

\(\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\)

 

 

observations

(FZ) For any b,c, y_m is a Laurent polynomial.

Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )

In this example, 

\(bc\leq 3\) iff the recurrence is periodic

 

 

cluster algebra associated to Cartan matrices

Finite type classification \[A(b,c)\] related to root systems of Cartan matrix

\( \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}\)

Say \(A(b,c)\) is of finite/affine/indefinite type if \(bc\leq 3\), \(bc=4\), \(bc>4\)

when \(bc\leq 3\)

\(y_m=y_n\) if and only if \(m\equiv n \mod (h+2)\) where h is coxeter number

bc=1, h=2

bc=2, h=4

bc=3, h=6

bc\geq 4, h=\infity

If bc\geq 4, all y_m distinct

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links