"Rank 2 cluster algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
11번째 줄: 11번째 줄:
  
 
==cluster variables and exchange relations==
 
==cluster variables and exchange relations==
 +
* Fix two positive integers b and c.
 +
* Let $y_1$ and $y_2$ be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math>
 +
* Define a sequence $\{y_n\}$ by
 +
$$
 +
y_{m-1}y_{m+1}=
 +
\begin{cases}
 +
y_m^b+1, & \text{if $m$ is odd}\\
 +
y_m^c+1, & \text{if $m$ is even} \\
 +
\end{cases}
 +
$$
 +
* We call this ''''exchange relation''''
 +
* <math>y_m</math>'s are called ''''cluster variable''''
 +
* <math>\{y_i,y_{i+1}\}</math> "'''cluster'''"
 +
* <math>\{y_m^py_{m+1}^q\}</math> "'''cluster monomials'''" (supported on a given cluster)
 +
* Note : we can use the exchange relation any $y_m$ in terms of arbitrary cluster <math>\{y_i,y_{i+1}\}</math> (rational expression)
  
Fix two positive integers b and c.
 
 
Let y_1 and y_2 be variable in the field <math>F=\mathbb{Q}(y_1,y_2)</math>
 
 
Define a sequence {y_n}.
 
 
<math>y_{m-1}y_{m+1}=y_m^b+1</math> if m odd
 
 
<math>y_{m-1}y_{m+1}=y_m^c+1</math> if m even
 
 
We call this ''''exchange relation''''
 
 
<math>y_m</math>'s are called ''''cluster variable''''
 
 
<math>\{y_i,y_{i+1}\}</math> "'''cluster'''"<br><math>\{y_m^py_{m+1}^q\}</math> "'''cluster monomials'''" (supported on a given cluster)
 
 
Note : we can use the exchange relation any y_m in terms of arbitrary cluster <math>\{y_i,y_{i+1}\}</math> (rational expression)
 
 
 
 
 
 
 
 
==matrix formulation==
 
 
<math>B=\begin{bmatrix} 0 & -b\\ c  &\,0 \end{bmatrix}</math>
 
 
<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
 
<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
 
For <math>k\in \{1,2,\cdots, n\}</math>,  <math>x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}</math>
 
 
<math>x_1x_1'=x_2^c+1</math> call x_1'=x_3
 
 
<math>x_2x_2'=x_1^b+1</math> call x_2'=x_4
 
 
 
 
 
<math>\mu_k(B)</math>
 
 
<math>-b_{ij}</math> if k=i or j
 
 
<math>b_{ij}</math> if <math>b_{ik}b_{kj}\leq 0</math>
 
  
 
 
 
 
  
<math>b_{ij}+b_{ik}b_{kj}</math> if <math>b_{ik}, b_{kj}>0</math>
+
===matrix formulation===
 +
:<math>B=\begin{bmatrix} 0 & -b\\ c  &\,0 \end{bmatrix}</math>
 +
:<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 +
:<math>\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 +
* <math>x_1x_1'=x_2^c+1</math> call $x_1'=x_3$
 +
* <math>x_2x_2'=x_1^b+1</math> call $x_2'=x_4$
  
<math>b_{ij}-b_{ik}b_{kj}</math> if <math>b_{ik},{b_{kj}< 0</math>
 
 
<math>\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c  &\,0 \end{bmatrix}</math>
 
 
 
 
  
 
 
 
 
  
 
==observations==
 
==observations==
 
+
;theorem (FZ) : For any $b,c$, $y_m$ is a Laurent polynomial.
(FZ)
+
* Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
 
+
* In this example, <math>bc\leq 3</math> iff the recurrence is periodic
For any b,c, y_m is a Laurent polynomial.
 
 
 
Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
 
 
 
In this example, 
 
 
 
<math>bc\leq 3</math> iff the recurrence is periodic
 
  
 
 
 
 
85번째 줄: 50번째 줄:
  
 
==cluster algebra associated to Cartan matrices==
 
==cluster algebra associated to Cartan matrices==
 
+
* Finite type classification <math>A(b,c)</math> related to root systems of Cartan matrix
Finite type classification :
+
:<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
 
+
* Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>  
<math>A(b,c)</math> related to root systems of Cartan matrix
+
* when <math>bc\leq 3</math>, <math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]]
 
+
* $bc=1, h=2$
<math> \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}</math>
+
* $bc=2, h=4$
 
+
* $bc=3, h=6$
Say <math>A(b,c)</math> is of finite/affine/indefinite type if <math>bc\leq 3</math>, <math>bc=4</math>, <math>bc>4</math>
+
* $bc\geq 4, h=\infty$
 
+
* If $bc\geq 4$, all $y_m$ are distinct
when <math>bc\leq 3</math>
 
 
 
<math>y_m=y_n</math> if and only if <math>m\equiv n \mod (h+2)</math> where h is [[Coxeter number and dual Coxeter number|Coxeter number]]
 
 
 
bc=1, h=2
 
 
 
bc=2, h=4
 
 
 
bc=3, h=6
 
 
 
bc\geq 4, h=\infity
 
 
 
If bc\geq 4, all y_m distinct
 
 
 
 
 
 
 
 
 
 
 
  
 
==algebraic structure==
 
==algebraic structure==
 
+
* By "Laurent phenomenen" each element in $A(b,c)$ can be uniquely expressed as Laurent polynomial in $y_m$ and $y_{m+1}$ for any $m$
By "Laurent phenomenen" each element in A(b,c) can be uniquely expressed as Laurent polynomial in y_m and y_{m+1} for any m<br> B.F.Zelevinsky 's result :
+
;theorem (Berenstein, Fomin and Zelevinsky) :
 
+
:<math>A(b,c) =\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math>
 <math>A(b,c) =\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]</math><br> standard monomial basis : the set <math>\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}</math> is a <math>\mathbb{Z}</math>-basis of <math>A(b,c)</math>.<br> Here support of any such monomial is <math>\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}</math>.<br><math>A(b,c)</math> is finitely generated. In fact,<br><math>A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/<y_0y_2-y_1^b-1,y_1y_3-y_2^c-1></math>
+
* standard monomial basis : the following set  is a <math>\mathbb{Z}</math>-basis of <math>A(b,c)</math>
 
+
:<math>\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}</math>
 
+
* Here support of any such monomial is  
 
+
:<math>\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}</math>
 
+
* <math>A(b,c)</math> is finitely generated. In fact,
 
+
:<math>A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle</math>
==== 하위페이지 ====
 
 
 
* [[rank 2 cluster algebra]]<br>
 
** [[rank 2 cluster algebra canonical basis]]<br>
 
*** [[Sherman-Zelevinsky argument]]<br>
 
** [[rank 2 cluster algebra examples]]<br>
 
 
 
 
 
  
 
 
 
 
  
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
 
+
* [[Rank 2 cluster algebra examples]] 
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
 
 
 
==expositions==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==articles==
 
==articles==
 
 
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082. 
 
* '''[SZ2003]'''Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082. 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/[[분류:개인노트]]
 
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]

2013년 10월 11일 (금) 08:23 판

introduction

  • cluster algebra defined by a 2x2 matrix
  • Laurent phenomenon
  • Positivity conjecture
  • finite classification

 

 

cluster variables and exchange relations

  • Fix two positive integers b and c.
  • Let $y_1$ and $y_2$ be variable in the field \(F=\mathbb{Q}(y_1,y_2)\)
  • Define a sequence $\{y_n\}$ by

$$ y_{m-1}y_{m+1}= \begin{cases} y_m^b+1, & \text{if $m$ is odd}\\ y_m^c+1, & \text{if $m$ is even} \\ \end{cases} $$

  • We call this 'exchange relation'
  • \(y_m\)'s are called 'cluster variable'
  • \(\{y_i,y_{i+1}\}\) "cluster"
  • \(\{y_m^py_{m+1}^q\}\) "cluster monomials" (supported on a given cluster)
  • Note : we can use the exchange relation any $y_m$ in terms of arbitrary cluster \(\{y_i,y_{i+1}\}\) (rational expression)


 

matrix formulation

\[B=\begin{bmatrix} 0 & -b\\ c &\,0 \end{bmatrix}\] \[\mu_{1}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\] \[\mu_{2}(B)=\begin{bmatrix} 0 & b\\ -c &\,0 \end{bmatrix}\]

  • \(x_1x_1'=x_2^c+1\) call $x_1'=x_3$
  • \(x_2x_2'=x_1^b+1\) call $x_2'=x_4$


 

observations

theorem (FZ)
For any $b,c$, $y_m$ is a Laurent polynomial.
  • Positivity conjecture: coefficients of these Laurent polynomials are positive (numerator and denomonator always have )
  • In this example, \(bc\leq 3\) iff the recurrence is periodic

 

 

cluster algebra associated to Cartan matrices

  • Finite type classification \(A(b,c)\) related to root systems of Cartan matrix

\[ \begin{bmatrix} 2 & -b \\ -c & 2 \end{bmatrix}\]

  • Say \(A(b,c)\) is of finite/affine/indefinite type if \(bc\leq 3\), \(bc=4\), \(bc>4\)
  • when \(bc\leq 3\), \(y_m=y_n\) if and only if \(m\equiv n \mod (h+2)\) where h is Coxeter number
  • $bc=1, h=2$
  • $bc=2, h=4$
  • $bc=3, h=6$
  • $bc\geq 4, h=\infty$
  • If $bc\geq 4$, all $y_m$ are distinct

 

algebraic structure

  • By "Laurent phenomenen" each element in $A(b,c)$ can be uniquely expressed as Laurent polynomial in $y_m$ and $y_{m+1}$ for any $m$
theorem (Berenstein, Fomin and Zelevinsky)

\[A(b,c) =\cap_{m\in\mathbb{Z}}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}] =\cap_{m=0}^{2}\mathbb{Z}[y_m^{\pm 1},y_{m+1}^{\pm 1}]\]

  • standard monomial basis : the following set  is a \(\mathbb{Z}\)-basis of \(A(b,c)\)

\[\{y_0^{a_0}y_1^{a_1}y_2^{a_2}y_3^{a_3} : a_{m}\in\mathbb{Z}_{\geq 0}, a_0a_2=a_1a_3=0\}\]

  • Here support of any such monomial is

\[\{y_0,y_1\},\{y_1,y_2\},\{y_2,y_3\},\{y_0,y_3\}\]

  • \(A(b,c)\) is finitely generated. In fact,

\[A(b,c)=\mathbb{Z}[y_0,y_1,y_2,y_3]/\langle y_0y_2-y_1^b-1,y_1y_3-y_2^c-1\rangle\]

 


related items

 

articles

  • [SZ2003]Sherman, Paul, and Andrei Zelevinsky. 2003. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. math/0307082 (July 7). http://arxiv.org/abs/math/0307082