"Chern-Simons gauge theory and Witten's invariant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
30번째 줄: 30번째 줄:
 
* [[Chern class]]
 
* [[Chern class]]
 
* [[vector valued differential forms]]
 
* [[vector valued differential forms]]
 +
  
 
==Chern-Simons partition function==
 
==Chern-Simons partition function==
48번째 줄: 49번째 줄:
 
==Jones Polynomial==
 
==Jones Polynomial==
 
* path integral gives [[Jones polynomials]]
 
* path integral gives [[Jones polynomials]]
:<math>\langle K\rangle=\int {\operatorname{Tr}(\int_{K} A)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})</math>
+
:<math>\langle K\rangle=\int {\operatorname{Tr}\left(\int_{K} A\right)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})</math>
 
where <math>{\operatorname{Tr}(\int_{K} A)}</math> measures the twisting of the connection along the knot
 
where <math>{\operatorname{Tr}(\int_{K} A)}</math> measures the twisting of the connection along the knot
  
62번째 줄: 63번째 줄:
 
* [[Chern-Simons invariant]]
 
* [[Chern-Simons invariant]]
  
 
 
  
 
 
  
 
==memo==
 
==memo==
81번째 줄: 80번째 줄:
 
==related items==
 
==related items==
 
* closely related to the [[Kashaev's volume conjecture|Kashaev Volume conjecture]]
 
* closely related to the [[Kashaev's volume conjecture|Kashaev Volume conjecture]]
* [[WZW (Wess-Zumino-Witten) model and its central charge|WZW model]]
+
* [[WZW (Wess-Zumino-Witten) model and its central charge]]
 
* [[quantum dilogarithm]]
 
* [[quantum dilogarithm]]
 
* [[characteristic class]]
 
* [[characteristic class]]
112번째 줄: 111번째 줄:
 
* Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)
 
* Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)
 
* Edward Witten, [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial], Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399
 
* Edward Witten, [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial], Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399
 +
  
 
==links==
 
==links==

2013년 5월 30일 (목) 04:20 판

introduction

  • prototypical example of Topological quantum field theory(TQFT)
  • Witten introduced classical Chern-Simons theory to topology
  • M : 3-manifold
  • Let \(A\) be a SU(2)-connection on the trivial C^2 bundle over S^3
  • $\operatorname{CS}(A)$ denotes the Chern-Simons functional
  • the Chern-Simons action is given by

\[S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])\]


setting

  • M : compact oriented 3-manifold
  • $G=SU(2)$
  • \(P\to M\) : principal G-bundle
  • $\mathcal{A}_M$ : the space of connections on $P$
    • forms an affine space
    • can be identified with $\Omega^{1}(M,\mathfrak{g})$, the space of 1-forms on $M$ with values in $\mathfrak{g}$
  • $A\in \mathcal{A}_M$ : connection
  • \(F=A\wedge dA+A\wedge A\) : curvature
  • $\mathcal{G}=\operatorname{Map}(M,G)$ : the gauge group acting on $\mathcal{A}_M$ by

$$ g^{*}A=g^{-1}Ag+g^{-1}dg, g\in \mathcal{G} $$


Chern-Simons partition function

$$ Z_k(M)=\int e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\ $$ where \(e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\): formal probability measure on the space of all connections, coming from quantum field theory

asymptotic expansion

  • As $k\to \infty$,

$$ Z_k(M)\approx \frac{1}{2}e^{-3\pi i/4}\sum_{\alpha}\sqrt{T_{\alpha}(M)} e^{-2\pi i I_{\alpha}/4} e^{2\pi (k+2) \operatorname{CS}(A)} $$ where the sum is over flat connections $\alpha$


Jones Polynomial

\[\langle K\rangle=\int {\operatorname{Tr}\left(\int_{K} A\right)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})\] where \({\operatorname{Tr}(\int_{K} A)}\) measures the twisting of the connection along the knot


 

Morse theory approach

  • Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
  • analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices

 

Chern-Simons invariant


memo


history

 

 

related items

 

encyclopedia


question and answers(Math Overflow)

 

expositions

 

articles


links