"Chern-Simons gauge theory and Witten's invariant"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
91번째 줄: | 91번째 줄: | ||
==related items== | ==related items== | ||
+ | * [[Complex Chern-Simons theory]] | ||
* closely related to the [[Kashaev's volume conjecture|Kashaev Volume conjecture]] | * closely related to the [[Kashaev's volume conjecture|Kashaev Volume conjecture]] | ||
* [[WZW (Wess-Zumino-Witten) model and its central charge]] | * [[WZW (Wess-Zumino-Witten) model and its central charge]] |
2013년 5월 30일 (목) 13:24 판
introduction
- prototypical example of Topological quantum field theory(TQFT)
- Witten introduced classical Chern-Simons theory to topology
setting
- M : compact oriented 3-manifold
- $G=SU(2)$
- \(P\to M\) : principal G-bundle, trivial $SU(2)$ bundle over $M$ since $SU(2)$ is simply connected
- $\mathcal{A}_M$ : the space of connections on $P$
- forms an affine space
- can be identified with $\Omega^{1}(M,\mathfrak{g})$, the space of 1-forms on $M$ with values in $\mathfrak{g}$
- $A\in \mathcal{A}_M$ : connection
- \(F=A\wedge dA+A\wedge A\in \Omega^{2}(M,\mathfrak{g})\) : the curvature of connection $A$
- $\mathcal{G}=\operatorname{Map}(M,G)$ : the gauge group acting on $\mathcal{A}_M$ by
$$ g^{*}A=g^{-1}Ag+g^{-1}dg, g\in \mathcal{G} $$
- the Chern-Simons action functional is given by
\[\operatorname{CS}(A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])\]
- \(\operatorname{det}(I+\frac{iF}{2\pi})= c_0+c_1+c_2\)
- \(c_3=A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A\)
- \(c_2=\frac{1}{8\pi^2} \operatorname{tr} F\wedge F =dc_3\)
- \(\int_M c_3\)
- curvature and parallel transport
- Chern class
- vector valued differential forms
WRT invariant
- Chern-Simons partition function?
- Feynman diagrams and path integral
- The path integral defined by Witten
$$ Z_k(M)=\int_{\mathcal{A}_M/\mathcal{G}} e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\ $$ where \(e^{2\pi \sqrt{-1} k \operatorname{CS}(A)}DA\): formal probability measure on the space of all connections, coming from quantum field theory
Dehn surgery formula
- first established by Turaev-Reshetikhin
- M : cpt oriented 3-manifold without boundary
- M obtained as Dehn surgery on a framed link L with m components $L_j\, , 1\leq j \leq m$ in $S^3$. Then
$$ Z_k(M)=S_{00}C^{\sigma(L)}\sum_{\lambda}S_{0\lambda_1}\cdots S_{0\lambda_m}J(L;\lambda_1,\cdots,\lambda_m) $$ is a topological invariant of $M$ and does not depend on the choice of $L$ where them sum is for any coloring $\lambda :\{1,\cdots,m\} \to P_{+}(k)$
- $Z_k(S^3)=S_{00}$
- $Z_k(S^1\times S^2)=S_{00}\sum_{\mu} S_{0\mu}\frac{S_{0\mu}}{S_{00}}=1$
asymptotic expansion
- As $k\to \infty$,
$$ Z_k(M)\approx \frac{1}{2}e^{-3\pi i/4}\sum_{\alpha}\sqrt{T_{\alpha}(M)} e^{-2\pi i I_{\alpha}/4} e^{2\pi (k+2) \operatorname{CS}(A)} $$ where the sum is over flat connections $\alpha$
Jones Polynomial
- path integral gives Jones polynomials
\[\langle K\rangle=\int {\operatorname{Tr}\left(\int_{K} A\right)}e^{2\pi i k \operatorname{CS}(A)}DA=(q^{1/2}+q^{-1/2})V(K,q^{-1})\] where \({\operatorname{Tr}(\int_{K} A)}\) measures the twisting of the connection along the knot
Morse theory approach
- Taubes, Floer interpret the Chern-Simons function as a Morse function on the space of all gauge fields modulo the action of the group of gauge transformations
- analogous to Euler characteristic of a manifold can be computed as the signed count of Morse indices
Chern-Simons invariant
memo
history
- Complex Chern-Simons theory
- closely related to the Kashaev Volume conjecture
- WZW (Wess-Zumino-Witten) model and its central charge
- quantum dilogarithm
- characteristic class
encyclopedia
question and answers(Math Overflow)
- http://mathoverflow.net/questions/31905/some-basic-questions-about-chern-simons-theory
- http://mathoverflow.net/questions/36178/what-is-the-trace-in-the-chern-simons-action
expositions
- An Introduction to Chern-Simons Theory
- Lie groups and Chern-Simons Theory Benjamin Himpel
- Labastida, J. M. F. 1999. “Chern-Simons Gauge Theory: Ten Years After”. hep-th/9905057 (5월 8). doi:doi:10.1063/1.59663. http://arxiv.org/abs/hep-th/9905057.
- Curtis T. McMullen, The evolution of geometric structures on 3-manifolds Bull. Amer. Math. Soc. 48 (2011), 259-274.
- Freed, Daniel S. 1992. “Classical Chern-Simons Theory, Part 1.” arXiv:hep-th/9206021 (June 4). http://arxiv.org/abs/hep-th/9206021.
articles
- Kohno, Toshitake, and Toshie Takata. "Level-Rank Duality of Witten's 3-Manifold Invariants." Progress in algebraic combinatorics 24 (1996): 243. http://tqft.net/other-papers/knot-theory/Level-rank%20duality%20-%20Kohno,%20Takata.pdf
- http://journal.ms.u-tokyo.ac.jp/pdf/jms030310.pdf
- Witten, Edward. 1992. “Chern-Simons Gauge Theory As A String Theory”. hep-th/9207094 (7월 28). http://arxiv.org/abs/hep-th/9207094.
- Kirby, Robion, and Paul Melvin. 1991. “The 3-manifold Invariants of Witten and Reshetikhin-Turaev for Sl(2, C).” Inventiones Mathematicae 105 (1) (December 1): 473–545. doi:10.1007/BF01232277.
- Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399