"Teichmuller theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
41번째 줄: 41번째 줄:
  
 
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
 
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
 
 
 
 
 
 
 
<h5>shear coordinate</h5>
 
 
* E an edge (diagonal), T a triangulation (collection of edges or diagonals)
 
* <math>\Sigma</math> a point in the Teichmuller space (metric)
 
* shear coordinate <math>\tau_{\Sigma}(E,T)</math>
 
* for tropical version of shear coordiante, see [[lamination and tropical shear coordinates on a marked surface|lamination and shear coordinates on a marked surface]]
 
 
 
 
 
 
 
 
 
 
 
<h5>decorated Teichmuller space</h5>
 
 
\def decorated Teichmuller space <math>\tilde{T}(S,M)</math> is
 
 
* a point in T(S,M) (i.e.  hyperbolic metric)
 
* a choic of horocycle around each cusp from M (i.e. marked point)
 
 
\def (Penner) For a arc A in (S,M) and <math>\Sigma\in\tilde{T}(S,M)</math>,
 
 
the length of A with respect to \Sigma is
 
 
l_{\Sigma(A) = length on geodesic representative of A between intersections with horocycles around ends. (negative if 2 horocycles intersect) 
 
 
 
 
 
The <math>\lambda</math> - length is <math>\lambda_{\Sigma}(A) : = e^{l_{\Sigma}(A)/2}</math>
 
 
Note  :  \lambda_{\Sigma}(A) in \mathbb{R}_{> 0 }
 
 
 
 
 
\prop
 
 
In an ideal quadrilateral, the Ptolemy relation holds.
 
 
 
 
 
\thm (Penner)
 
 
For any triangulation (A_{i})
 
  
 
 
 
 
167번째 줄: 119번째 줄:
  
 
<h5>expositions</h5>
 
<h5>expositions</h5>
 
 
 
  
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
184번째 줄: 134번째 줄:
 
 
 
 
  
*   <br>
 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/
192번째 줄: 141번째 줄:
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
  
 
 
 
 

2011년 8월 13일 (토) 08:34 판

introduction

 

 

review of hyperbolic geometry

 

 

Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic  (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary

 

 

 

history

 

 

 

 

 

 

related items

 

 

 

 

 

encyclopedia

 

 

 

 

 

 

books

 

 

 

 

 

 

 

 

expositions

 

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

 

 

 

 

 

blogs

 

 

 

 

 

 

experts on the field

 

 

 

 

 

 

links