"Teichmuller theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
5번째 줄: | 5번째 줄: | ||
− | + | ==review of hyperbolic geometry</h5> | |
* horocycle<br> | * horocycle<br> | ||
25번째 줄: | 25번째 줄: | ||
− | + | ==Teichmuller space of a marked surface</h5> | |
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that | Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that | ||
48번째 줄: | 48번째 줄: | ||
− | + | ==history</h5> | |
64번째 줄: | 64번째 줄: | ||
− | + | ==related items</h5> | |
96번째 줄: | 96번째 줄: | ||
− | + | ==books</h5> | |
118번째 줄: | 118번째 줄: | ||
− | + | ==expositions</h5> | |
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos | * [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos | ||
146번째 줄: | 146번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
168번째 줄: | 168번째 줄: | ||
− | + | ==blogs</h5> | |
187번째 줄: | 187번째 줄: | ||
− | + | ==experts on the field</h5> | |
203번째 줄: | 203번째 줄: | ||
− | + | ==links</h5> | |
2012년 10월 28일 (일) 15:05 판
==introduction
==review of hyperbolic geometry
- horocycle
- exponentiated hyperbolic distances between horocycles drawn around vertices of a polygon with geodesic sides and cusps at the vertices
- lamination
- shear coordinates
- lambda length
- http://moniker.name/worldmaking/?p=744
- http://orion.math.iastate.edu/dept/thesisarchive/MSCC/OLearyMSCCSS06.pdf
- \def
- An ideal triangle in (S,M) is a triangle with vertices at M, whose sides are geodesics.
- \def
- A horocycle at marked point p is a set of points "equidistant" to p. In lift to H^2, looks like circle tangent to boundary at p.
==Teichmuller space of a marked surface
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
- are hyperbolic (constant curvature -1)
- have geodesic boundary at boundary of S
- local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
- have cusps at points in M
Considered up to diffeomorphism homotopic to identity.
Facts
(1) T(S,M) contractible
(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
==expositions
- Introduction to Teichmüller theory, old and new, Athanase Papadopoulos
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links