"Teichmuller theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5>review of hyperbolic geometry</h5>
+
==review of hyperbolic geometry</h5>
  
 
*  horocycle<br>
 
*  horocycle<br>
25번째 줄: 25번째 줄:
 
 
 
 
  
<h5>Teichmuller space of a marked surface</h5>
+
==Teichmuller space of a marked surface</h5>
  
 
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
 
Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that
48번째 줄: 48번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
 
 
 
64번째 줄: 64번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
 
 
 
96번째 줄: 96번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
118번째 줄: 118번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
 
* [http://www.ems-ph.org/books/055/9783037190296_introduction.pdf Introduction to Teichmüller theory, old and new], Athanase Papadopoulos
146번째 줄: 146번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
 
 
 
168번째 줄: 168번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
 
 
 
187번째 줄: 187번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
 
 
 
203번째 줄: 203번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
 
 
 

2012년 10월 28일 (일) 15:05 판

==introduction

 

 

==review of hyperbolic geometry

 

 

==Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic  (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary

 

 

 

==history

 

 

 

 

 

 

==related items

 

 

 

 

 

encyclopedia

 

 

 

 

 

 

==books

 

 

 

 

 

 

 

 

==expositions

 

 

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

 

 

 

 

 

==blogs

 

 

 

 

 

 

==experts on the field

 

 

 

 

 

 

==links