"Teichmuller theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
62번째 줄: 62번째 줄:
  
 
==articles==
 
==articles==
 +
* Antonakoudis, Stergios M. “The Complex Geometry of Teichm"uller Spaces and Bounded Symmetric Domains.” arXiv:1510.07340 [math], October 25, 2015. http://arxiv.org/abs/1510.07340.
 
* Penner, R. C., and Anton M. Zeitlin. “Decorated Super-Teichm"uller Space.” arXiv:1509.06302 [hep-Th, Physics:math-Ph], September 21, 2015. http://arxiv.org/abs/1509.06302.
 
* Penner, R. C., and Anton M. Zeitlin. “Decorated Super-Teichm"uller Space.” arXiv:1509.06302 [hep-Th, Physics:math-Ph], September 21, 2015. http://arxiv.org/abs/1509.06302.
  

2015년 10월 31일 (토) 19:30 판

introduction

 

 

review of hyperbolic geometry

 

 

Teichmuller space of a marked surface

Given marked surface (S,M) , the Teichmuller space T(S,M) is the space of metrics on (S,M) such that

  • are hyperbolic  (constant curvature -1)
  • have geodesic boundary at boundary of S
  • local neighborhood of point on boundary S can be mapped isometrically to neighborhood of a point here on one side of geodesic
  • have cusps at points in M

Considered up to diffeomorphism homotopic to identity.

Facts

(1) T(S,M) contractible

(2) T(S,M) is manifold of dimension 6g-6+2p+3b+c where g = genus, p=# of puncture, b = # boundary component, c=# of marked points on boundary

 

 

 

 

related items

 

 

expositions


articles

  • Antonakoudis, Stergios M. “The Complex Geometry of Teichm"uller Spaces and Bounded Symmetric Domains.” arXiv:1510.07340 [math], October 25, 2015. http://arxiv.org/abs/1510.07340.
  • Penner, R. C., and Anton M. Zeitlin. “Decorated Super-Teichm"uller Space.” arXiv:1509.06302 [hep-Th, Physics:math-Ph], September 21, 2015. http://arxiv.org/abs/1509.06302.