"Zeta integral"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* many zeta integrals in the theory of automorphic forms can be produced or explained by appropriate choices of a Schwartz space of test functions on a spherical homogeneous space, which are in turn dictated by the geometry of affine spherical embeddings
  
 +
 +
==local zeta integral==
 +
* quasicharacter on $F_v^{\times}$ are of the form $\omega_s(x)=\omega(x)|x|^s$ where $\omega$ is unitary
 +
* $\omega$ : unitary, $s\in \mathbb{C}$
 +
* the following converges for $\Re(s)>0$
 +
$$
 +
\zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x
 +
$$
 +
* analytic continuation of $Z(f,\omega,s)$
 +
* functional equation
 +
 +
==global zeta integral==
 +
===Riemann zeta function===
 +
* $f\in \mathcal{S}(\mathbb{A})$
 +
* define
 +
$$
 +
\zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x
 +
$$
 +
;thm
 +
The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$.
 +
This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation
 +
One has
 +
$$
 +
\zeta(f,s)=\zeta(\widehat{f},1-s)
 +
$$
 +
 +
 +
===Dirichlet L-functions===
 +
* $f\in \mathcal{S}(\mathbb{A})$
 +
* $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
 +
* define
 +
$$
 +
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
 +
$$
 +
;thm
 +
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has
 +
$$
 +
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
 +
$$
 +
 +
==articles==
 +
* http://arxiv.org/abs/1509.04835
 +
* Li, Wen-Wei. “Zeta Integrals, Schwartz Spaces and Local Functional Equations.” arXiv:1508.05594 [math], August 23, 2015. http://arxiv.org/abs/1508.05594.
 +
 +
 +
[[분류:L-functions and L-values]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:55 판

introduction

  • many zeta integrals in the theory of automorphic forms can be produced or explained by appropriate choices of a Schwartz space of test functions on a spherical homogeneous space, which are in turn dictated by the geometry of affine spherical embeddings


local zeta integral

  • quasicharacter on $F_v^{\times}$ are of the form $\omega_s(x)=\omega(x)|x|^s$ where $\omega$ is unitary
  • $\omega$ : unitary, $s\in \mathbb{C}$
  • the following converges for $\Re(s)>0$

$$ \zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x $$

  • analytic continuation of $Z(f,\omega,s)$
  • functional equation

global zeta integral

Riemann zeta function

  • $f\in \mathcal{S}(\mathbb{A})$
  • define

$$ \zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x $$

thm

The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$. This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation One has $$ \zeta(f,s)=\zeta(\widehat{f},1-s) $$


Dirichlet L-functions

  • $f\in \mathcal{S}(\mathbb{A})$
  • $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
  • define

$$ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x $$

thm

Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has $$ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) $$

articles