"Hecke indefinite modular forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
111번째 줄: | 111번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:mock modular forms]] |
2012년 10월 29일 (월) 11:33 판
introduction
see the apendix of
- Solvable lattice models with broken symmetry and Hecke's indefinite modular forms
- Michio Jimbo, Tetsuji Miwa and Masato Okado, 1986
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- On indefinite modular forms of weight one
- Toyokazu HIRAMATSU, Noburo ISHII, and Yoshio MIMURA
- A new look at Hecke's indefinite theta series
- [1]Polishchuk, Alexander
- Solvable lattice models with broken symmetry and Hecke's indefinite modular forms
- Michio Jimbo, Tetsuji Miwa and Masato Okado, 1986
- Michio Jimbo, Tetsuji Miwa and Masato Okado, 1986
- Affine Lie algebras and Hecke modular forms
- V. G. Kac and D. H. Peterson, 1980
- V. G. Kac and D. H. Peterson, 1980
- Über einen Zusammenhang zwischen elliptischen Modulfunktionen und indefiniten quadratischen Formen
- E. Hecke, Mathematische Werke, Vandenhoeck and Ruprecht, Góttingen, 1959, pp. 418-427
- E. Hecke, Mathematische Werke, Vandenhoeck and Ruprecht, Góttingen, 1959, pp. 418-427
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[2]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field